Suppr超能文献

数值摄取驱动纳米塑料毒性:通过毒代动力学-毒效动力学(TKTD)模型揭示的尺寸效应。

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

作者信息

Qian Huling, Wang Yuhuai, Wang Yan, Hu Hongwei, Tan Qiao-Guo, Yan Neng, Xie Minwei

机构信息

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

Key Laboratory of Groundwater Quality and Health (Ministry of Education), State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.

出版信息

J Hazard Mater. 2025 Mar 15;486:137105. doi: 10.1016/j.jhazmat.2025.137105. Epub 2025 Jan 2.

Abstract

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations. The TK model reproduced nanoplastic uptake and elimination, indicating a uniform elimination rate constant (0.035 h) across sizes, while uptake rate constants (k) varied by size and concentration. Fluorescence analysis revealed larger nanoplastics (66-nm, 170-nm) accumulated primarily in the intestine, while smaller nanoplastics (30-nm) were more widely distributed. Re-modeling uptake specifically for the intestine showed consistent trends in the uptake rate constants, with larger nanoplastics exhibiting higher ingestion efficiency. Toxicity effects mirrored the order of whole-organism nanoplastic uptake: 30-nm nanoplastics were most toxic, 170-nm nanoplastics showed slight toxicity, and 66-nm nanoplastics were non-toxic. The TD model suggested similar hazard potentials across sizes, with observed toxicity differences likely driven by whole-organism particle uptake. The TKTD model predicted no-effect concentrations at 1.8 × 10 and 6.0 × 10 particles L for 30-nm and 170-nm nanoplastics, respectively, corresponding to mass concentrations of 2.54 and 1540 mg L. These values are significantly higher than reported environmental levels, indicating a low current toxicity risk to D. magna. Overall, this study enhances understanding of how size-dependent uptake behaviors influence nanoplastic toxicity, stressing the need for more accurate assessment of hazards linked to low-size nanoplastics and supporting more informed decision-making in nanoplastic pollution management.

摘要

由于在低浓度下追踪纳米塑料存在困难,使用基于过程的模型预测纳米塑料的生物累积和毒性具有挑战性。本研究使用毒代动力学-毒效动力学(TKTD)模型研究了纳米塑料暴露对大型溞的尺寸依赖性影响。在两种数值暴露浓度下测试了三种尺寸(30纳米、66纳米、170纳米)的钯掺杂荧光纳米塑料。毒代动力学(TK)模型再现了纳米塑料的摄取和消除过程,表明不同尺寸的消除速率常数均一(0.035 h),而摄取速率常数(k)随尺寸和浓度而变化。荧光分析表明,较大的纳米塑料(66纳米、170纳米)主要积聚在肠道中,而较小的纳米塑料(30纳米)分布更广泛。专门针对肠道进行的摄取重新建模显示,摄取速率常数呈现一致趋势,较大的纳米塑料表现出更高的摄取效率。毒性效应反映了纳米塑料在整个生物体中的摄取顺序:30纳米的纳米塑料毒性最大,170纳米的纳米塑料表现出轻微毒性,66纳米的纳米塑料无毒。毒效动力学(TD)模型表明不同尺寸的潜在危害相似,观察到的毒性差异可能是由整个生物体对颗粒的摄取驱动的。TKTD模型预测,30纳米和170纳米纳米塑料的无效应浓度分别为1.8×10和6.0×10颗粒/L,对应质量浓度为2.54和1540 mg/L。这些值显著高于报告的环境水平,表明目前对大型溞的毒性风险较低。总体而言,本研究增进了对尺寸依赖性摄取行为如何影响纳米塑料毒性的理解,强调需要更准确地评估与小尺寸纳米塑料相关的危害,并为纳米塑料污染管理中的更明智决策提供支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验