Cassina Patricia, Miquel Ernesto, Martínez-Palma Laura, Cassina Adriana
Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Neuroscience. 2025 Feb 16;567:227-234. doi: 10.1016/j.neuroscience.2024.12.058. Epub 2025 Jan 7.
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system. Although astrocytes are typically considered to exhibit low mitochondrial respiratory chain activity, they possess a noteworthy mitochondrial network. Interestingly, both the morphology and activity of these organelles change following glial reactivity. Despite receiving less attention compared to studies on neuronal mitochondria, recent studies indicate that mitochondria play a crucial role in driving the transition of astrocytes from a quiescent to a reactive state in various neurological disorders. Notably, stimulating mitochondria in astrocytes has been shown to reduce damage associated with the neurodegenerative disease amyotrophic lateral sclerosis. Here, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage. In this review, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage.
在这个庆祝乌拉圭神经科学学会(SNU)成立30周年的特刊中,我们认为有必要强调,乌拉圭对神经胶质细胞的研究几乎与SNU的历史同步开展,并为国际科学界对神经元-神经胶质细胞相互作用的理解做出了贡献。神经胶质细胞,尤其是星形胶质细胞,传统上被视为中枢神经系统(CNS)中的支持性成分,在神经元损伤时会发生显著的形态和功能改变,这种现象被称为神经胶质反应。在星形胶质细胞的众多功能中,鉴于神经系统对能量的高需求,代谢支持对神经元功能具有重要意义。尽管星形胶质细胞通常被认为线粒体呼吸链活性较低,但它们拥有一个值得注意的线粒体网络。有趣的是,这些细胞器的形态和活性在神经胶质反应后都会发生变化。尽管与对神经元线粒体的研究相比受到的关注较少,但最近的研究表明,线粒体在各种神经系统疾病中驱动星形胶质细胞从静止状态转变为反应性状态方面起着关键作用。值得注意的是,刺激星形胶质细胞中的线粒体已被证明可以减少与神经退行性疾病肌萎缩侧索硬化相关的损伤。在这里,我们关注支持以下新出现范式的研究:损伤后星形胶质细胞会发生代谢重编程,这与其表型转变为一种新的功能状态有关,这种状态会显著影响病理进程。因此,探索神经胶质细胞内的线粒体活性和代谢重编程可能为开发减轻神经元损伤的创新治疗方法提供有价值的见解。在这篇综述中,我们关注支持以下新出现范式的研究:损伤后星形胶质细胞会发生代谢重编程,这与其表型转变为一种新的功能状态有关,这种状态会显著影响病理进程。因此,探索神经胶质细胞内的线粒体活性和代谢重编程可能为开发减轻神经元损伤的创新治疗方法提供有价值的见解。