Suppr超能文献

等离子体声发射信号与激光诱导击穿光谱相结合用于钢的准确分类。

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

作者信息

Xiong Shilei, Yang Nan, Guan Haoyu, Shi Guangyuan, Luo Ming, Deguchi Yoshihiro, Cui Minchao

机构信息

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.

Graduate School of Advanced Technology and Science, Tokushima University, 2-1, Minamijyosanjima, Tokushima, 770-8506, Japan.

出版信息

Anal Chim Acta. 2025 Jan 22;1336:343496. doi: 10.1016/j.aca.2024.343496. Epub 2024 Nov 28.

Abstract

BACKGROUND

Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information. Existing research has not addressed the use of LIBS in conjunction with PAES for steel classification and identification, thus it is quite interesting to examine a speedy steel classification approach using LIBS and PAES.

RESULTS

In this work, we used LIBS and PAES mid-level data fusion methods to classify and identify eight steel samples. We recorded the LIBS spectral data and PAES data of the eight samples synchronously, respectively, and proposed three novel mid-level data fusion strategies (additive fusion, splicing fusion, and multiplicative fusion). We have discussed the classification results by using machine learning algorithms. The conclusion revealed that the average accuracy of classifying a single LIBS spectrum is 72.5 %, whereas the average accuracy of classifying a single PAES data is 78.75 %. By combining LIBS spectral data and PAES data in the middle layer, the average accuracy of the splicing fusion classification result is 87.5 %, and the average accuracy of the multiplication fusion classification result is 86.25 %. Meanwhile, we have also found that thermal hardness may be an important physical factor affecting the acoustic emission signal of steel plasma.

SIGNIFICANCE

Accurate steel classification is achieved by combining spectral and acoustic data. This approach is anticipated to be used in the future to quickly classify large amounts of steel in industrial settings, leading to a notable increase in the efficiency of industrial production.

摘要

背景

快速准确地对钢材进行分类能够有效提高工业生产效率。近年来,激光诱导击穿光谱技术(LIBS)与其他技术相结合用于材料分类的研究不断发展。等离子体声发射信号(PAES)是一种利用LIBS检测到的与光谱分离的模态信息,它能够反映样品的一些物理化学信息。现有研究尚未涉及LIBS结合PAES用于钢材分类和识别,因此研究一种利用LIBS和PAES的快速钢材分类方法颇具意义。

结果

在本研究中,我们采用LIBS和PAES中层数据融合方法对8个钢样品进行分类和识别。我们分别同步记录了8个样品的LIBS光谱数据和PAES数据,并提出了三种新颖的中层数据融合策略(相加融合、拼接融合和相乘融合)。我们利用机器学习算法讨论了分类结果。结论表明,单个LIBS光谱分类的平均准确率为72.5%,而单个PAES数据分类的平均准确率为78.75%。通过在中层将LIBS光谱数据和PAES数据相结合,拼接融合分类结果的平均准确率为87.5%,相乘融合分类结果的平均准确率为86.25%。同时,我们还发现热硬度可能是影响钢等离子体声发射信号的一个重要物理因素。

意义

通过结合光谱和声学数据实现了对钢材的准确分类。预计该方法未来可用于工业环境中快速对大量钢材进行分类,从而显著提高工业生产效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验