Suppr超能文献

基于机器学习的预测模型,整合超声评分和临床特征,用于预测未分化关节炎患者进展为类风湿关节炎的情况。

Machine learning-based prediction model integrating ultrasound scores and clinical features for the progression to rheumatoid arthritis in patients with undifferentiated arthritis.

作者信息

Hu Xiaoli, Liu Xianmei, Xu Yuan, Zhang Shuai, Liu Jun, Zhou Shi

机构信息

Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China.

Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China.

出版信息

Clin Rheumatol. 2025 Feb;44(2):649-659. doi: 10.1007/s10067-025-07304-3. Epub 2025 Jan 10.

Abstract

OBJECTIVES

Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex interaction of clinical variables, and routine extensive US is impractical. Machine learning (ML) models, particularly those integrating the 18-joint ultrasound scoring system (US18), have shown potential to address these issues but remain underexplored. This study aims to evaluate ML models integrating US18 with clinical data to improve early identification of high-risk patients and support personalized treatment strategies.

METHODS

In this prospective cohort, 432 UA patients were followed for 1 year to track progression to RA. Four ML algorithms and one deep learning model were developed using baseline clinical and US18 data. Comparative experiments on a testing cohort identified the optimal model. SHAP (SHapley Additive exPlanations) analysis highlighted key variables, validated through an ablation experiment.

RESULTS

Of the 432 patients, 152 (35.2%) progressed to the RA group, while 280 (64.8%) remained in the non-RA group. The Random Forest (RnFr) model demonstrated the highest accuracy and sensitivity. SHAP analysis identified joint counts at US18 Grade 2, total US18 score, and swollen joint count as the most influential variables. The ablation experiment confirmed the importance of US18 in enhancing early RA detection.

CONCLUSIONS

Integrating the US18 assessment with clinical data in an RnFr model significantly improves early detection of RA progression in UA patients, offering potential for earlier and more personalized treatments. Key Points • A machine learning model integrating clinical and ultrasound features effectively predicts rheumatoid arthritis progression in undifferentiated arthritis patients. • The 18-joint ultrasound scoring system (US18) enhances predictive accuracy, particularly when incorporated with clinical variables in a Random Forest model. • SHAP analysis underscores that joint severity levels in US18 contribute significantly to early identification of high-risk patients. • This study offers a feasible and efficient approach for clinical implementation, supporting more personalized and timely RA treatment strategies.

摘要

目的

预测未分化关节炎(UA)患者的类风湿关节炎(RA)病情进展仍然是一项挑战。由于临床变量之间复杂的相互作用,结合临床评估和超声检查(US)的传统方法往往缺乏准确性,并且常规进行广泛的超声检查并不实际。机器学习(ML)模型,尤其是那些整合了18关节超声评分系统(US18)的模型,已显示出解决这些问题的潜力,但仍未得到充分探索。本研究旨在评估将US18与临床数据相结合的ML模型,以改善对高危患者的早期识别,并支持个性化治疗策略。

方法

在这个前瞻性队列研究中,对432例UA患者进行了为期1年的随访,以追踪其向RA的病情进展。使用基线临床数据和US18数据开发了四种ML算法和一种深度学习模型。在一个测试队列上进行的对比实验确定了最优模型。SHAP(Shapley加性解释)分析突出了关键变量,并通过一个消融实验进行了验证。

结果

在432例患者中,152例(35.2%)进展至RA组,而280例(64.8%)仍处于非RA组。随机森林(RnFr)模型表现出最高的准确性和敏感性。SHAP分析确定US18二级的关节计数、US18总分以及肿胀关节计数为最具影响力的变量。消融实验证实了US18在增强早期RA检测方面的重要性。

结论

在RnFr模型中将US18评估与临床数据相结合,可显著改善对UA患者RA病情进展的早期检测,为更早和更个性化的治疗提供了可能性。要点 • 一个整合临床和超声特征的机器学习模型能有效预测未分化关节炎患者的类风湿关节炎病情进展。 • 18关节超声评分系统(US18)提高了预测准确性,特别是当与随机森林模型中的临床变量结合时。 • SHAP分析强调US18中的关节严重程度水平对早期识别高危患者有显著贡献。 • 本研究为临床实施提供了一种可行且高效的方法,支持更个性化和及时的RA治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验