Li Xiaoshen, Cheng Qingpeng, Zhang Yingtian, Liu Yunhao, Pan Yu, Zhao Dejian, Xiong Shaohui, Liu Wei, Jiang Xueyang, Yan Jiayan, Duan Xiang, Tian Ye, Li Xingang
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202424435. doi: 10.1002/anie.202424435. Epub 2025 Jan 10.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases. It facilitates the transformation of metallic Pd into PdZn alloy, effectively suppressing CO production through inhibiting the reverse water-gas shift reaction mediated by the carboxylate pathway on Pd sites. Moreover, it enables the efficient transfer of hydrogen species via hydrogen spillover from PdZn alloy to ZnO for compensating the poor hydrogen dissociation ability of ZnO, thereby creating both more oxygen vacancies essential for CO activation and a hydroxyl-rich environment conducive to hydrogenation of intermediates. These collective modifications on PdZn-ZnO dual sites synergistically induce the propensity of the formate pathway for methanol synthesis. Consequently, compared to the unmodified catalyst, our as-designed catalyst increases methanol selectivity from 64.2 to 80.0 %, reduces CO selectivity from 35.0 to 19.8 %, and achieves an impressive methanol space-time yield of 9028.0 mg g h at a similar CO conversion (~8.0 %).
利用可再生资源产生的绿色氢气将一氧化碳加氢制甲醇,为可持续碳循环提供了一种有前景的方法,但对副产物一氧化碳的选择性较高。在此,我们通过构建TiO载体的晶格位错结构,开发了一种高效的PdZn-ZnO/TiO催化剂。我们发现,这种改性使TiO中排列不规则的原子有序化,从而稳定晶格,进而削弱了与负载活性相的电子相互作用。这促进了金属Pd向PdZn合金的转变,通过抑制Pd位点上由羧酸盐途径介导的逆水煤气变换反应,有效抑制了一氧化碳的生成。此外,它还能使氢物种通过氢溢流从PdZn合金高效转移到ZnO,以弥补ZnO较差的氢解离能力,从而产生更多对一氧化碳活化至关重要的氧空位以及有利于中间体氢化的富羟基环境。对PdZn-ZnO双位点的这些共同改性协同诱导了甲醇合成的甲酸盐途径倾向。因此,与未改性的催化剂相比,我们设计的催化剂将甲醇选择性从64.2%提高到80.0%,将一氧化碳选择性从35.0%降低到19.8%,并在类似的一氧化碳转化率(约8.0%)下实现了令人印象深刻的甲醇时空产率9028.0 mg g⁻¹ h⁻¹。