Suppr超能文献

比较两样本对数线性暴露估计与贝叶斯模型指导的妥布霉素精准给药在成年囊性纤维化患者中的应用。

Comparing two-sample log-linear exposure estimation with Bayesian model-informed precision dosing of tobramycin in adult patients with cystic fibrosis.

作者信息

Tong Dominic M H, Hughes Maria-Stephanie A, Hu Jasmine, Pearson Jeffrey C, Kubiak David W, Dionne Brandon W, Hughes Jasmine H

机构信息

InsightRX, San Francisco, California, USA.

Department of Pharmacy, Brigham and Women's Hospital, Boston, Massachusetts, USA.

出版信息

Antimicrob Agents Chemother. 2025 Feb 13;69(2):e0104024. doi: 10.1128/aac.01040-24. Epub 2025 Jan 10.

Abstract

Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown. This single-center retrospective analysis included adult patients with CF receiving tobramycin from 2015 to 2022. Tobramycin concentrations were predicted using LLR or Bayesian estimation with two population PK models (Hennig and Alghanem). Then, both methods were used to estimate the AUC for simulated patients. For Bayesian estimation, AUC estimation with flattened priors and limited sampling strategies were also assessed. Predictions were evaluated using normalized root mean square error (nRMSE), mean percent error (MPE), and accuracy. The data set included 70 treatment courses, with 32 not evaluable by LLR due to detection limits or timing issues. Bayesian estimation demonstrated worse accuracy (47.1%-50.7% vs 75.7%), higher MPE (24.2%-32.4% vs -2.4%), and higher nRMSE (35.0%-39.4% vs 24.8%) than LLR for peak concentrations but performed better on troughs (accuracy: 92.0%-92.9% vs 84.6%). Bayesian estimation with flattened priors and a single sample at 4 h was comparable to LLR performance, with better accuracy (42.9%-68.0% vs 41.1% LLR), comparable MPE (-2.3% to -3.7% vs -0.5%) and nRMSE (11.3%-21.6% vs 17.3%). Bayesian estimation with one concentration and flattened priors can match LLR prediction accuracy. However, popPK models must be improved to better estimate peak samples.

摘要

囊性纤维化(CF)患者的妥布霉素给药面临着其高药代动力学(PK)变异性和狭窄治疗窗的挑战。剂量通常使用两点对数线性回归(LLR)进行个体化,以量化浓度-时间曲线(AUC)下的面积。贝叶斯模型指导的精准给药(MIPD)可能允许用更少的样本进行剂量个体化;然而,这些方法的相对性能尚不清楚。这项单中心回顾性分析纳入了2015年至2022年接受妥布霉素治疗的成年CF患者。使用LLR或贝叶斯估计与两个群体PK模型(亨尼希和阿尔加内姆)预测妥布霉素浓度。然后,两种方法都用于估计模拟患者的AUC。对于贝叶斯估计,还评估了具有平坦先验和有限采样策略的AUC估计。使用归一化均方根误差(nRMSE)、平均百分比误差(MPE)和准确性来评估预测。数据集包括70个治疗疗程,其中32个由于检测限或时间问题无法通过LLR进行评估。对于峰值浓度,贝叶斯估计的准确性低于LLR(47.1%-50.7%对75.7%),MPE更高(24.2%-32.4%对-2.4%),nRMSE更高(35.0%-39.4%对24.8%),但在谷值方面表现更好(准确性:92.0%-92.9%对84.6%)。具有平坦先验且在4小时采集单个样本的贝叶斯估计与LLR性能相当,准确性更高(42.9%-68.0%对LLR的41.1%),MPE相当(-2.3%至-3.7%对-0.5%),nRMSE相当(11.3%-21.6%对17.3%)。具有一个浓度和平坦先验的贝叶斯估计可以匹配LLR预测准确性。然而,群体PK模型必须改进以更好地估计峰值样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a490/11823644/0884d324b549/aac.01040-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验