Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium.
CPT Pharmacometrics Syst Pharmacol. 2022 Aug;11(8):1045-1059. doi: 10.1002/psp4.12813. Epub 2022 Jun 15.
Infliximab dosage de-escalation without prior knowledge of drug concentrations may put patients at risk for underexposure and trigger the loss of response. A single-model approach for model-informed precision dosing during infliximab maintenance therapy has proven its clinical benefit in patients with inflammatory bowel diseases. We evaluated the predictive performances of two multi-model approaches, a model selection algorithm and a model averaging algorithm, using 18 published population pharmacokinetic models of infliximab for guiding dosage de-escalation. Data of 54 patients with Crohn's disease and ulcerative colitis who underwent infliximab dosage de-escalation after an earlier escalation were used. A priori prediction (based solely on covariate data) and maximum a posteriori prediction (based on covariate data and trough concentrations) were compared using accuracy and precision metrics and the classification accuracy at the trough concentration target of 5.0 mg/L. A priori prediction was inaccurate and imprecise, with the lowest classification accuracies irrespective of the approach (median 59%, interquartile range 59%-63%). Using the maximum a posteriori prediction, the model averaging algorithm had systematically better predictive performance than the model selection algorithm or the single-model approach with any model, regardless of the number of concentration data. Only a single trough concentration (preferably at the point of care) sufficed for accurate and precise prediction. Predictive performance of both single- and multi-model approaches was robust to the lack of covariate data. Model averaging using four models demonstrated similar predictive performance with a five-fold shorter computation time. This model averaging algorithm was implemented in the TDMx software tool to guide infliximab dosage de-escalation in the forthcoming prospective MODIFI study (NCT04982172).
在不知道药物浓度的情况下降低英夫利昔单抗剂量可能会使患者面临药物暴露不足的风险,并导致治疗反应丧失。在英夫利昔单抗维持治疗中,一种单一模型方法用于模型指导下的精准给药,已被证明对炎症性肠病患者具有临床获益。我们评估了两种多模型方法,即模型选择算法和模型平均算法的预测性能,使用了 18 个已发表的英夫利昔单抗群体药代动力学模型来指导剂量下调。使用了 54 名克罗恩病和溃疡性结肠炎患者的数据,这些患者在之前的剂量增加后进行了英夫利昔单抗剂量下调。使用准确性和精密度指标以及在 5.0mg/L 谷浓度目标下的分类准确性,比较了先验预测(仅基于协变量数据)和最大后验预测(基于协变量数据和谷浓度)。先验预测不准确且不精确,无论采用哪种方法,分类准确性最低(中位数 59%,四分位间距 59%-63%)。使用最大后验预测,模型平均算法的预测性能均优于模型选择算法或任何模型的单一模型方法,无论浓度数据的数量如何。仅单个谷浓度(最好在床旁)就足以进行准确和精确的预测。单模型和多模型方法的预测性能对缺乏协变量数据具有稳健性。使用四个模型进行模型平均显示出类似的预测性能,计算时间缩短了五倍。该模型平均算法已在 TDMx 软件工具中实现,以指导即将进行的前瞻性 MODIFI 研究(NCT04982172)中的英夫利昔单抗剂量下调。