文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway.

作者信息

Jiang Yalan, He Pingping, Sheng Ke, Peng Yongmiao, Wu Huilan, Qian Songwei, Ji Weiping, Guo Xiaoling, Shan Xiaoou

机构信息

Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.

Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Elife. 2025 Jan 10;13:RP96600. doi: 10.7554/eLife.96600.


DOI:10.7554/eLife.96600
PMID:39792010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11723580/
Abstract

Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/31d5dc41c891/elife-96600-sa3-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/3ea47f217cf8/elife-96600-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/e48e32a4c63c/elife-96600-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/5e18a3cc75e5/elife-96600-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/773e6cd6ad35/elife-96600-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/118cf18e73d1/elife-96600-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/a073f439c85e/elife-96600-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/3eabf993802b/elife-96600-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/5c1ac8b1f7c9/elife-96600-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/25658edd5203/elife-96600-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/d2ff9f18edf1/elife-96600-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/81fdbf84fcb3/elife-96600-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/dbda85ae72a6/elife-96600-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/f13e29315ec8/elife-96600-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/6bb1b100dc0d/elife-96600-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/f176e1dc2ebc/elife-96600-sa3-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/fdea5ce18677/elife-96600-sa3-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/096d70d16b54/elife-96600-sa3-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/e2b425d5b7a5/elife-96600-sa3-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/2fcd431be282/elife-96600-sa3-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/2a870a1fbf79/elife-96600-sa3-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/0bc251db5c41/elife-96600-sa3-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/36cc7c81c758/elife-96600-sa3-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/05c8aa2d5cf1/elife-96600-sa3-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/ec43612c6f2e/elife-96600-sa3-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/1aaff09bc3a2/elife-96600-sa3-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/31d5dc41c891/elife-96600-sa3-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/3ea47f217cf8/elife-96600-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/e48e32a4c63c/elife-96600-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/5e18a3cc75e5/elife-96600-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/773e6cd6ad35/elife-96600-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/118cf18e73d1/elife-96600-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/a073f439c85e/elife-96600-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/3eabf993802b/elife-96600-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/5c1ac8b1f7c9/elife-96600-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/25658edd5203/elife-96600-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/d2ff9f18edf1/elife-96600-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/81fdbf84fcb3/elife-96600-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/dbda85ae72a6/elife-96600-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/f13e29315ec8/elife-96600-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/6bb1b100dc0d/elife-96600-sa3-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/f176e1dc2ebc/elife-96600-sa3-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/fdea5ce18677/elife-96600-sa3-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/096d70d16b54/elife-96600-sa3-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/e2b425d5b7a5/elife-96600-sa3-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/2fcd431be282/elife-96600-sa3-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/2a870a1fbf79/elife-96600-sa3-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/0bc251db5c41/elife-96600-sa3-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/36cc7c81c758/elife-96600-sa3-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/05c8aa2d5cf1/elife-96600-sa3-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/ec43612c6f2e/elife-96600-sa3-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/1aaff09bc3a2/elife-96600-sa3-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e4/11723580/31d5dc41c891/elife-96600-sa3-fig13.jpg

相似文献

[1]
The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway.

Elife. 2025-1-10

[2]
Inhibition of the Keap1/Nrf2 Signaling Pathway Significantly Promotes the Progression of Type 1 Diabetes Mellitus.

Oxid Med Cell Longev. 2021

[3]
Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation.

J Ethnopharmacol. 2024-3-25

[4]
G-Rh4 improves pancreatic β-cells dysfunction in vivo and in vitro by increased expression of Nrf2 and its target genes.

Food Chem Toxicol. 2021-2

[5]
Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade.

J Nutr Biochem. 2017-6

[6]
Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus.

Apoptosis. 2019-12

[7]
Effects of Oltipraz on the Glycolipid Metabolism and the Nrf2/HO-1 Pathway in Type 2 Diabetic Mice.

Drug Des Devel Ther. 2024-12-5

[8]
Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2.

Br J Pharmacol. 2014-4

[9]
Protective effect of acorn (Quercus liaotungensis Koidz) on streptozotocin-damaged MIN6 cells and type 2 diabetic rats via p38 MAPK/Nrf2/HO-1 pathway.

J Ethnopharmacol. 2021-2-10

[10]
Salvia miltiorrhiza Lipophilic Fraction Attenuates Oxidative Stress in Diabetic Nephropathy through Activation of Nuclear Factor Erythroid 2-Related Factor 2.

Am J Chin Med. 2017

引用本文的文献

[1]
Leonurine (SCM-198) exerts protective effects on pancreatic β-cells in type 1 diabetes by modulating the Bax/Bcl-2/Caspase-3 signaling pathway.

BMC Complement Med Ther. 2025-8-14

[2]
Eugenol: An Insight Into the Anticancer Perspective and Pharmacological Aspects.

Food Sci Nutr. 2025-8-3

本文引用的文献

[1]
L-Fucose promotes enteric nervous system regeneration in type 1 diabetic mice by inhibiting SMAD2 signaling pathway in enteric neural precursor cells.

Cell Commun Signal. 2023-10-5

[2]
Eugenol Attenuates Transmissible Gastroenteritis Virus-Induced Oxidative Stress and Apoptosis Via ROS-NRF2-ARE Signaling.

Antioxidants (Basel). 2022-9-18

[3]
Endothelial Dysfunction and Diabetic Cardiomyopathy.

Front Endocrinol (Lausanne). 2022

[4]
Effects of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Selenium Distribution in Mice Model with Type 1 Diabetes.

Biol Trace Elem Res. 2023-3

[5]
Type 1 Diabetes Mellitus.

Ann Intern Med. 2022-3

[6]
Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition.

Int J Mol Sci. 2021-8-26

[7]
Eugenol Alleviates Dextran Sulfate Sodium-Induced Colitis Independent of Intestinal Microbiota in Mice.

J Agric Food Chem. 2021-9-15

[8]
Mitophagy and apoptosis mediated by ROS participate in AlCl-induced MC3T3-E1 cell dysfunction.

Food Chem Toxicol. 2021-9

[9]
Cinnamaldehyde Improves Metabolic Functions in Streptozotocin-Induced Diabetic Mice by Regulating Gut Microbiota.

Drug Des Devel Ther. 2021

[10]
Biological Properties and Prospects for the Application of Eugenol-A Review.

Int J Mol Sci. 2021-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索