Suppr超能文献

使用LightGBM、XGBoost和支持向量机算法通过体尺测量预测肉用杂交雌性兔的活重

Predicting Live Weight for Female Rabbits of Meat Crosses From Body Measurements Using LightGBM, XGBoost and Support Vector Machine Algorithms.

作者信息

Önder Hasan, Tirink Cem, Yakubets Taras, Getya Andriy, Matvieiev Mykhalio, Kononenko Ruslan, Şen Uğur, Özkan Çağri Özgür, Tolun Tolga, Kaya Fahrettin

机构信息

Faculty of Agriculture, Department of Animal Science, Ondokuz Mayis University, Samsun, Türkiye.

Faculty of Agriculture, Department of Animal Science, Igdir University, Iğdır, Türkiye.

出版信息

Vet Med Sci. 2025 Jan;11(1):e70149. doi: 10.1002/vms3.70149.

Abstract

Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals. A highly efficient gradient-boosting decision tree (LightGBM), eXtreme gradient-boosting (XGBoost) and support vector machine (SVM) algorithms were evaluated and compared to the prediction of BW. The coefficient of determination, root mean square error and mean absolute error values were used as comparison criteria. The results showed that LightGBM, XGBoost and SVM algorithms were well fit for the BW using the biometric measures with over 95% accuracy for both train and test sets. The BL was determined as the most explanatory variable on body weight.

摘要

利用生物特征测量预测体重(BW)是一项重要工具,尤其对于需要数学模型的动物福利和自动表型分析工具而言。在本研究中,旨在利用体长(BL)、胸围(CG)和腰围(WW)对Hyla NG母系品种的兔子进行体重预测。对这些动物采用了标准的养兔方法。评估并比较了高效梯度提升决策树(LightGBM)、极端梯度提升(XGBoost)和支持向量机(SVM)算法对体重的预测。决定系数、均方根误差和平均绝对误差值用作比较标准。结果表明,LightGBM、XGBoost和SVM算法在使用生物特征测量预测体重方面拟合良好,训练集和测试集的准确率均超过95%。体长被确定为对体重最具解释力的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0863/11720723/72d8eebb258d/VMS3-11-e70149-g002.jpg

相似文献

4
Enhanced cardiovascular risk prediction in the Western Pacific: A machine learning approach tailored to the Malaysian population.
PLoS One. 2025 Jun 17;20(6):e0323949. doi: 10.1371/journal.pone.0323949. eCollection 2025.
7
Predictive modeling the probability of suffering from metabolic syndrome using machine learning: A population-based study.
Heliyon. 2022 Dec 10;8(12):e12343. doi: 10.1016/j.heliyon.2022.e12343. eCollection 2022 Dec.
8
Interventions for fertility preservation in women with cancer undergoing chemotherapy.
Cochrane Database Syst Rev. 2025 Jun 19;6:CD012891. doi: 10.1002/14651858.CD012891.pub2.
10
Machine learning-based drought prediction using Palmer Drought Severity Index and TerraClimate data in Ethiopia.
PLoS One. 2025 Jun 18;20(6):e0326174. doi: 10.1371/journal.pone.0326174. eCollection 2025.

本文引用的文献

2
Pregnancy Complications and Feto-Maternal Monitoring in Rabbits.
Vet Sci. 2023 Oct 17;10(10):622. doi: 10.3390/vetsci10100622.
3
Artificial intelligence algorithm comparison and ranking for weight prediction in sheep.
Sci Rep. 2023 Aug 15;13(1):13242. doi: 10.1038/s41598-023-40528-4.
4
Comparison of the data mining and machine learning algorithms for predicting the final body weight for Romane sheep breed.
PLoS One. 2023 Aug 3;18(8):e0289348. doi: 10.1371/journal.pone.0289348. eCollection 2023.
5
Potential and limitations of rabbit meat in maintaining food security in Ukraine.
Meat Sci. 2023 Oct;204:109293. doi: 10.1016/j.meatsci.2023.109293. Epub 2023 Jul 26.
6
Usage of the XGBoost and MARS algorithms for predicting body weight in Kajli sheep breed.
Trop Anim Health Prod. 2023 Jul 27;55(4):276. doi: 10.1007/s11250-023-03700-6.
7
A two-stage intrusion detection method based on light gradient boosting machine and autoencoder.
Math Biosci Eng. 2023 Feb 9;20(4):6966-6992. doi: 10.3934/mbe.2023301.
8
Predicting live weight using body volume formula in lactating water buffalo.
J Dairy Res. 2023 May;90(2):138-141. doi: 10.1017/S0022029923000249. Epub 2023 May 4.
9
On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes.
Food Sci Anim Resour. 2023 Mar;43(2):197-219. doi: 10.5851/kosfa.2023.e5. Epub 2023 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验