Suppr超能文献

人工智能算法在绵羊体重预测中的比较和排名。

Artificial intelligence algorithm comparison and ranking for weight prediction in sheep.

机构信息

National Institute of Technology, Srinagar, India.

Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India.

出版信息

Sci Rep. 2023 Aug 15;13(1):13242. doi: 10.1038/s41598-023-40528-4.

Abstract

In a rapidly transforming world, farm data is growing exponentially. Realizing the importance of this data, researchers are looking for new solutions to analyse this data and make farming predictions. Artificial Intelligence, with its capacity to handle big data is rapidly becoming popular. In addition, it can also handle non-linear, noisy data and is not limited by the conditions required for conventional data analysis. This study was therefore undertaken to compare the most popular machine learning (ML) algorithms and rank them as per their ability to make predictions on sheep farm data spanning 11 years. Data was cleaned and prepared was done before analysis. Winsorization was done for outlier removal. Principal component analysis (PCA) and feature selection (FS) were done and based on that, three datasets were created viz. PCA (wherein only PCA was used), PCA+ FS (both techniques used for dimensionality reduction), and FS (only feature selection used) bodyweight prediction. Among the 11 ML algorithms that were evaluated, the correlations between true and predicted values for MARS algorithm, Bayesian ridge regression, Ridge regression, Support Vector Machines, Gradient boosting algorithm, Random forests, XgBoost algorithm, Artificial neural networks, Classification and regression trees, Polynomial regression, K nearest neighbours and Genetic Algorithms were 0.993, 0.992, 0.991, 0.991, 0.991, 0.99, 0.99, 0.984, 0.984, 0.957, 0.949, 0.734 respectively for bodyweights. The top five algorithms for the prediction of bodyweights, were MARS, Bayesian ridge regression, Ridge regression, Support Vector Machines and Gradient boosting algorithm. A total of 12 machine learning models were developed for the prediction of bodyweights in sheep in the present study. It may be said that machine learning techniques can perform predictions with reasonable accuracies and can thus help in drawing inferences and making futuristic predictions on farms for their economic prosperity, performance improvement and subsequently food security.

摘要

在快速变化的世界中,农场数据呈指数级增长。意识到这些数据的重要性,研究人员正在寻找新的解决方案来分析这些数据并进行农业预测。人工智能凭借其处理大数据的能力迅速流行起来。此外,它还可以处理非线性、嘈杂的数据,并且不受传统数据分析所需条件的限制。因此,进行了这项研究,以比较最流行的机器学习 (ML) 算法,并根据它们在跨越 11 年的绵羊养殖场数据上进行预测的能力对其进行排名。在进行分析之前,对数据进行了清理和准备。进行了异常值去除的 Winsorization。进行了主成分分析 (PCA) 和特征选择 (FS),并在此基础上创建了三个数据集,即 PCA(仅使用 PCA)、PCA+FS(同时使用两种技术进行降维)和 FS(仅使用特征选择)体重预测。在所评估的 11 种 ML 算法中,MARS 算法、贝叶斯岭回归、岭回归、支持向量机、梯度提升算法、随机森林、XgBoost 算法、人工神经网络、分类回归树、多项式回归、K 最近邻和遗传算法的真实值和预测值之间的相关性分别为 0.993、0.992、0.991、0.991、0.991、0.99、0.99、0.984、0.984、0.957、0.949、0.734 对于体重。预测体重的前五种算法是 MARS、贝叶斯岭回归、岭回归、支持向量机和梯度提升算法。本研究共开发了 12 种用于绵羊体重预测的机器学习模型。可以说,机器学习技术可以以合理的精度进行预测,因此可以帮助在农场进行推断并进行未来预测,以实现其经济繁荣、性能提高,进而保障粮食安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b8f/10427635/0996197bc01a/41598_2023_40528_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验