Huang Fei, Shen Xiaowan, Wang Siyuan, Xu Haochen, Liu Hongxuan, Wang Zexu, Gao He, Yao Xinmin, Cao Hengzhen, Chen Bin, Wang Xijie, Zhang Jizhi, Wu Zhile, Zhu Mingyu, Xiong Hongzhi, Zhao Weike, Li Huan, Yu Zejie, Liu Liu, Shi Yaocheng, Dai Daoxin
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
Adv Sci (Weinh). 2025 Mar;12(9):e2410345. doi: 10.1002/advs.202410345. Epub 2025 Jan 10.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration. Here, low-birefringence photonic integrated circuits (PICs) based on lithium-tantalate-on-insulator (LTOI) are proposed and demonstrated, which enables high-performance passive photonic devices as well as EO modulators, showing great potential for large-scale photonic chips. Analysis of mode conversion and evolution behaviors with both low- and high-birefringence shows undesired mode hybridizations can be effectively suppressed. A simple and universal fabrication process is developed and various representative passive photonic devices are demonstrated with impressive performances. Finally, a wavelength-division-multiplexed optical transmitter is developed with a data rate of 1.6 Tbps by monolithically integrating 8 EO modulators and an 8-channel arrayed waveguide grating. Therefore, the demonstrated low-birefringence LTOI platform shows strong ability in both passively and actively controlling photon behaviors on a chip, indicating great potential for ultrafast processing and communicating large-capacity data.
利用高速和低功耗优势对大容量数据进行光子操控,是应对后摩尔时代爆炸式增长需求的一种很有前景的解决方案。一个成熟的绝缘体上铌酸锂(LNOI)平台已被广泛用于高性能电光(EO)调制器,以桥接电信号和光信号。然而,x切LNOI平台上的光子波导由于强烈的双折射而存在严重的偏振模式转换/耦合问题,这使得难以实现大规模集成。在此,基于绝缘体上钽酸锂(LTOI)的低双折射光子集成电路(PIC)被提出并得到验证,其能够实现高性能无源光子器件以及电光调制器,在大规模光子芯片方面显示出巨大潜力。对低双折射和高双折射情况下的模式转换和演化行为分析表明,不期望的模式杂化能够得到有效抑制。开发了一种简单通用的制造工艺,并展示了各种具有令人印象深刻性能的代表性无源光子器件。最后,通过单片集成8个电光调制器和一个8通道阵列波导光栅,开发出了数据速率为1.6 Tbps的波分复用光发射机。因此,所展示的低双折射LTOI平台在芯片上被动和主动控制光子行为方面都表现出强大能力,在超快速处理和传输大容量数据方面显示出巨大潜力。