Suppr超能文献

基于铌酸锂集成光子学的超快可调谐激光器。

Ultrafast tunable lasers using lithium niobate integrated photonics.

机构信息

Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland.

出版信息

Nature. 2023 Mar;615(7952):411-417. doi: 10.1038/s41586-023-05724-2. Epub 2023 Mar 15.

Abstract

Early works and recent advances in thin-film lithium niobate (LiNbO) on insulator have enabled low-loss photonic integrated circuits, modulators with improved half-wave voltage, electro-optic frequency combs and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces. Although recent advances have demonstrated tunable integrated lasers based on LiNbO (refs. ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (SiN)-LiNbO photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss SiN photonic integrated circuits with thin-film LiNbO through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10 hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing SiN photonic integrated circuits with LiNbO creates a platform that combines the individual advantages of thin-film LiNbO with those of SiN, which show precise lithographic control, mature manufacturing and ultralow loss.

摘要

早期的薄膜铌酸锂(LiNbO)在绝缘体上的工作和近期的进展使低损耗光子集成电路、具有改进的半波电压的调制器、电光频率梳和片上电光器件成为可能,其应用范围从微波光子学到微波到光量子接口。尽管最近的进展已经证明了基于 LiNbO 的可调谐集成激光器(参考文献),但该平台实现频率灵活、窄线宽集成激光器的全部潜力尚未实现。在这里,我们报告了一种基于混合氮化硅(SiN)-LiNbO 光子平台的具有快速调谐速率的此类激光器,并展示了其在相干激光测距中的应用。我们的平台基于通过晶圆级直接键合将超低损耗 SiN 光子集成电路与薄膜 LiNbO 异质集成,与之前展示的芯片级集成形成对比,其具有 8.5 分贝/米的低传播损耗,通过自注入锁定到激光二极管实现窄线宽激光(固有线宽为 3 千赫兹)。谐振器的混合模式允许以 12×10 赫兹/秒的速度进行电光激光频率调谐,具有高线性度和低滞后,同时保持窄线宽。使用混合集成激光器,我们进行了相干光学测距(FMCW LiDAR)实验的概念验证。将 LiNbO 赋予 SiN 光子集成电路,创建了一个平台,该平台结合了薄膜 LiNbO 的各个优势和 SiN 的优势,SiN 具有精确的光刻控制、成熟的制造工艺和超低损耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f4/10017507/5915b1682410/41586_2023_5724_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验