Pederson Gregory T, Stahle Daniel, McWethy David B, Toohey Matthew, Jungclaus Johann, Lee Craig, Martin Justin, Alt Mio, Kichas Nickolas, Chellman Nathan, McConnell Joseph R, Whitlock Cathy
U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715.
Department of Earth Sciences, Montana State University, Bozeman, MT 59717.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2412162121. doi: 10.1073/pnas.2412162121. Epub 2024 Dec 30.
Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP). Here, we used this subfossil wood record to develop tree-ring-based temperature estimates for the upper-elevation climate conditions that resulted in ancient forest establishment and growth and the subsequent regional ice-patch growth and downslope shift of treeline. Results suggest that mid-Holocene forest establishment and growth occurred under warm-season (May-Oct) mean temperatures of 6.2 °C (±0.2 °C), until a multicentury cooling anomaly suppressed temperatures below 5.8 °C, resulting in stand mortality by c. 5,440 y BP. Transient climate model simulations indicate that regional cooling was driven by changes in summer insolation and Northern Hemisphere volcanism. The initial cooling event was followed centuries later (c. 5,100 y BP) by sustained Icelandic volcanic eruptions that forced a centennial-scale 1.0 °C summer cooling anomaly and led to rapid ice-patch growth and preservation of the trees. With recent warming (c. 2000-2020 CE), warm-season temperatures now equal and will soon exceed those of the mid-Holocene period of high treeline. It is likely that perennial ice cover will again disappear from the region, and treeline may expand upslope so long as plant-available moisture and disturbance are not limiting.
气候驱动的高海拔森林分布变化以及冰雪覆盖面积的减少对生态系统和全球水安全具有重大影响。在美国落基山脉的大黄石生态系统中,近期一个高海拔(海拔3091米)冰原的融化暴露出一片成熟的白皮松()树林,其海拔比现代树线高出约180米,可追溯到全新世中期(约公元前5950年至5440年)。在此,我们利用这个亚化石木材记录,为导致古代森林建立和生长以及随后区域冰原生长和树线向下坡移动的高海拔气候条件,开发基于树木年轮的温度估计值。结果表明,全新世中期森林的建立和生长发生在暖季(5月至10月)平均温度为6.2°C(±0.2°C)的情况下,直到一个持续数百年的降温异常将温度抑制到5.8°C以下,导致约公元前5440年树木死亡。瞬态气候模型模拟表明,区域降温是由夏季日照和北半球火山活动的变化驱动的。最初的降温事件之后几个世纪(约公元前5100年),持续的冰岛火山喷发导致了百年尺度的1.0°C夏季降温异常,并导致冰原迅速生长和树木得以保存。随着近期变暖(公元2000 - 2020年),暖季温度现在已与全新世中期高树线时期相等,并很快将超过该时期。很可能多年生冰盖将再次从该地区消失,并且只要植物可利用的水分和干扰因素不构成限制,树线可能会向上坡扩展。