Díaz-Álvarez Josefa, García-Gutiérrez Fernando, Bueso-Inchausti Pedro, Cabrera-Martín María Nieves, Delgado-Alonso Cristina, Delgado-Alvarez Alfonso, Diez-Cirarda Maria, Valls-Carbo Adrian, Fernández-Romero Lucia, Valles-Salgado Maria, Dauden-Oñate Paloma, Matías-Guiu Jorge, Peña-Casanova Jordi, Ayala José L, Matias-Guiu Jordi A
Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Mérida, Spain.
Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain.
Cortex. 2025 Feb;183:309-325. doi: 10.1016/j.cortex.2024.11.022. Epub 2024 Dec 28.
This study aimed to evaluate the capacity of neuropsychological assessment to predict the regional brain metabolism in a cohort of patients with amnestic Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using Machine Learning algorithms.
We included 360 subjects, consisting of 186 patients with AD, 87 with bvFTD, and 87 cognitively healthy controls. All participants underwent a neuropsychological assessment using the Addenbrooke's Cognitive Examination and the Neuronorma battery, in addition to [F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. We trained Machine Learning algorithms, including artificial neural networks (ANN) and models that incorporate genetic algorithms (GAs), to predict the presence of regional hypometabolism in FDG-PET imaging based on cognitive testing results.
The proposed models demonstrated the ability to predict hypometabolism trends with approximately 70% accuracy in key regions associated with AD and bvFTD. In addition, we showed that incorporating neuropsychological tests provided relevant information for predicting brain hypometabolism. The temporal lobe was the best-predicted region, followed by the parietal, frontal, and some areas in the occipital lobe. Diagnosis played a significant role in the estimation of hypometabolism, and several neuropsychological tests were identified as the most important predictors for different brain regions. In our experiments, classical Machine Learning models, such as support vector machines enhanced by a preliminary feature selection step using GAs outperformed ANNs.
A successful prediction of regional brain metabolism of patients with AD and bvFTD was achieved based on the results of neuropsychological examination and Machine Learning algorithms. These findings support the neurobiological validity of neuropsychological examination and the feasibility of a topographical diagnosis in patients with neurodegenerative disorders.
本研究旨在使用机器学习算法评估神经心理学评估对遗忘型阿尔茨海默病(AD)和行为变异型额颞叶痴呆(bvFTD)患者队列中脑区代谢的预测能力。
我们纳入了360名受试者,包括186例AD患者、87例bvFTD患者和87名认知健康对照者。除了[F] - 氟脱氧葡萄糖正电子发射断层扫描(FDG - PET)成像外,所有参与者均使用Addenbrooke认知检查和Neuronorma成套测试进行了神经心理学评估。我们训练了包括人工神经网络(ANN)和纳入遗传算法(GA)的模型在内的机器学习算法,以根据认知测试结果预测FDG - PET成像中脑区代谢减低的情况。
所提出的模型显示出能够以约70%的准确率预测与AD和bvFTD相关关键区域的代谢减低趋势。此外,我们表明纳入神经心理学测试为预测脑代谢减低提供了相关信息。颞叶是预测效果最佳的区域,其次是顶叶、额叶和枕叶的一些区域。诊断在代谢减低的评估中起重要作用,并且几种神经心理学测试被确定为不同脑区最重要的预测指标。在我们的实验中,经典机器学习模型,如通过使用GA的初步特征选择步骤增强的支持向量机,优于ANN。
基于神经心理学检查结果和机器学习算法,成功实现了对AD和bvFTD患者脑区代谢的预测。这些发现支持了神经心理学检查的神经生物学有效性以及神经退行性疾病患者进行地形学诊断的可行性。