Suppr超能文献

Uncertainty modeling for inductive knowledge graph embedding.

作者信息

Liu Chao, Kwong Sam, Wang Xizhao

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China.

Department of Computing and Decision Sciences, Lingnan University, 999077, Hong Kong, China.

出版信息

Neural Netw. 2025 Apr;184:107103. doi: 10.1016/j.neunet.2024.107103. Epub 2025 Jan 6.

Abstract

In the process of refining Knowledge Graphs (KGs), new entities emerge, and old entities evolve, which usually updates their attribute information and neighborhood structures. This results in a distribution shift problem for entity features in the embedding space during graph representation learning. Most of existing inductive knowledge graph embedding methods focus mainly on the representation learning of new entities, neglecting the negative impact caused by distribution shift of entity features. In this paper, we use the skill of mean and variance reconstruction to develop a novel inductive knowledge graph embedding model named EDSU for processing the shift of entity feature distribution. Specifically, by assuming that the embedding feature of entity follows multivariate Gaussian distribution, the reconstruction combines the distribution characteristics of components in an entity embedding vector with neighborhood structure information of a set of entity embedding vectors, in order to alleviate the deviation of data information between intra-entity and inter-entity. Furthermore, the connection between the entity features distributions before and after the shift is established, which guides the model training process and provides an interpretation on the rationality of such handling distribution shift in view of distributional data augmentation. Extensive experiments have been conducted and the results demonstrate that our EDSU model outperforms previous state-of-the-art baseline models on inductive link prediction tasks.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验