Suppr超能文献

基于三元组感知图神经网络的分解式多模态知识图实体对齐方法。

Triplet-aware graph neural networks for factorized multi-modal knowledge graph entity alignment.

机构信息

School of Computer Science, Beijing University of Posts and Telecommunications, China; School of Computer Science and Engineering, Beihang University, Beijing, China.

School of Computer Science and Engineering, Beihang University, Beijing, China.

出版信息

Neural Netw. 2024 Nov;179:106479. doi: 10.1016/j.neunet.2024.106479. Epub 2024 Jun 20.

Abstract

Multi-Modal Entity Alignment (MMEA), aiming to discover matching entity pairs on two multi-modal knowledge graphs (MMKGs), is an essential task in knowledge graph fusion. Through mining feature information of MMKGs, entities are aligned to tackle the issue that an MMKG is incapable of effective integration. The recent attempt at neighbors and attribute fusion mainly focuses on aggregating multi-modal attributes, neglecting the structure effect with multi-modal attributes for entity alignment. This paper proposes an innovative approach, namely TriFac, to exploit embedding refinement for factorizing the original multi-modal knowledge graphs through a two-stage MMKG factorization. Notably, we propose triplet-aware graph neural networks to aggregate multi-relational features. We propose multi-modal fusion for aggregating multiple features and design three novel metrics to measure knowledge graph factorization performance on the unified factorized latent space. Empirical results indicate the effectiveness of TriFac, surpassing previous state-of-the-art models on two MMEA datasets and a power system dataset.

摘要

多模态实体对齐(Multi-Modal Entity Alignment,MMEA)旨在发现两个多模态知识图谱(Multi-Modal Knowledge Graphs,MMKGs)上的匹配实体对,是知识图谱融合中的一项重要任务。通过挖掘 MMKG 的特征信息,对实体进行对齐,以解决 MMKG 无法有效整合的问题。最近在邻居和属性融合方面的尝试主要集中在聚合多模态属性上,忽略了多模态属性的结构效应在实体对齐中的作用。本文提出了一种创新的方法,即 TriFac,通过两阶段 MMKG 因子分解,利用嵌入细化来分解原始多模态知识图谱。值得注意的是,我们提出了基于三元组感知的图神经网络来聚合多关系特征。我们提出了多模态融合来聚合多个特征,并设计了三个新的指标来衡量知识图谱在统一的因子化潜在空间上的因子分解性能。实验结果表明,TriFac 是有效的,在两个 MMEA 数据集和一个电力系统数据集上都超过了先前的最先进模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验