Suppr超能文献

金属有机框架衍生的嵌入铁纳米颗粒的多孔碳作为过一硫酸盐活化剂用于高效降解有机污染物。

MOFs-derived porous carbon embedded Fe nanoparticles as peroxymonosulfate activator for efficient degradation of organic pollutants.

作者信息

Zhou Jia-Qi, Xu Huan-Yan, Li Bo, Wang Bao-Ying, Liu Yue, Zhao Zhi-Hao, Zhuang Yan-Li

机构信息

Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.

Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.

出版信息

Environ Res. 2025 Mar 1;268:120790. doi: 10.1016/j.envres.2025.120790. Epub 2025 Jan 8.

Abstract

Achieving the harmless degradation of organic pollutants remains a challenging task for the advanced oxidation processes. Metal-organic frameworks have emerged in the field of energy and environmental catalysis. Herein, MIL-101(Fe) was employed as the precursor to prepare a porous carbon embedded Fe nanoparticles (Fe@C) via a pyrolytic process under N protection. MIL-101(Fe) and Fe@C were characterized in detail by various instrumental techniques. The control experiments indicated that Fe@C exhibited much higher capacity to activate peroxymonosulfate (PMS) for the degradation of Levofloxacin (LEV) than MIL-101(Fe). Within 60 min reaction time, LEV degradation efficiency was increased from 37.0% in the MIL-101(Fe)/PMS system to 96.3% in the Fe@C/PMS one. The affecting parameters of Fe@C/PMS system were investigated systematically, including LEV concentration, Fe@C dosage, PMS dosage, solution pH and coexisting anions. Furthermore, various representative organic pollutants could be efficiently degraded in the Fe@C/PMS system. Radical quenching tests and electron paramagnetic resonance (EPR) disclosed that singlet oxygen (O), sulfate radical (SO) and hydroxyl radical (•OH) governed the degradation of LEV, among which O played the most prominent role. Meanwhile, the degradation intermediates and pathways of LEV under the radical and non-radical attacks were deduced by high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-QTOF/MS) assisted by density functional theory (DFT) calculations. The reasonably designed Fe@C might facilitate electron transfer and thus promote Fe(III)/Fe(II) cycle and PMS activation. This work will provide a new idea for the development of MOFs-derived carbon-based persulfate activators.

摘要

实现有机污染物的无害化降解对于高级氧化过程而言仍然是一项具有挑战性的任务。金属有机框架材料已在能源和环境催化领域崭露头角。在此,以MIL-101(Fe)为前驱体,通过在氮气保护下的热解过程制备了一种嵌入多孔碳的铁纳米颗粒(Fe@C)。采用各种仪器技术对MIL-101(Fe)和Fe@C进行了详细表征。对照实验表明,Fe@C在活化过一硫酸盐(PMS)降解左氧氟沙星(LEV)方面表现出比MIL-101(Fe)更高的能力。在60分钟的反应时间内,LEV的降解效率从MIL-101(Fe)/PMS体系中的37.0%提高到了Fe@C/PMS体系中的96.3%。系统研究了Fe@C/PMS体系的影响参数,包括LEV浓度、Fe@C用量、PMS用量、溶液pH值和共存阴离子。此外,各种代表性有机污染物在Fe@C/PMS体系中均可被有效降解。自由基猝灭试验和电子顺磁共振(EPR)表明,单线态氧(O)、硫酸根自由基(SO)和羟基自由基(•OH)主导了LEV的降解过程,其中O起的作用最为显著。同时,借助密度泛函理论(DFT)计算,通过高效液相色谱-四极杆-飞行时间质谱(HPLC-QTOF/MS)推导了LEV在自由基和非自由基攻击下的降解中间体和途径。合理设计的Fe@C可能有助于电子转移,从而促进Fe(III)/Fe(II)循环和PMS活化。这项工作将为开发基于金属有机框架材料的碳基过硫酸盐活化剂提供新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验