Yuan Shuangyin, Song Bingke, Liu Gang, Yang Biqi, Dai Mingqiu, Gao Zetian, Cao Shan, Zhao Miao
Suzhou XDM 3D Printing Technology Co., Ltd., Suzhou 215000, China.
Shanghai Institute of Spacecraft Equipment, Shanghai 200240, China.
Materials (Basel). 2024 Dec 25;18(1):29. doi: 10.3390/ma18010029.
The stress distribution within the struts of lattice metamaterials is non-uniform under compressive loads, with stress concentrations typically occurring at the node regions. Inspired by bamboo, this study proposes a type of body-centered cubic (BCC) lattice metamaterial with tapered prism struts (BCCT). The compressive behavior, deformation modes, mechanical properties, and failure mechanisms of BCCT lattice metamaterials are systematically analyzed using finite element methods and validated through compression tests. Parametric analysis is conducted to investigate the effects of key design parameters, including volume fraction, shape parameter, and material properties. The results reveal that BCCT lattice metamaterials effectively eliminate stress concentration at nodes by redistributing stress toward the center of the struts. This redistribution changes the failure mode from shear band failure to layer collapse, while the struts maintain a bending-dominated deformation mechanism under compression. The mechanical properties of BCCT lattice metamaterials are significantly influenced by the shape factor. Furthermore, the mechanical properties of BCCT lattice metamaterials with different volume fractions and materials are consistently superior to BCC ones, which verifies the effectiveness and adaptability of lattice metamaterials with taper prismatic struts for potential lightweight applications.
在压缩载荷作用下,晶格超材料支柱内的应力分布是不均匀的,应力集中通常出现在节点区域。受竹子的启发,本研究提出了一种具有锥形棱柱支柱的体心立方(BCC)晶格超材料(BCCT)。使用有限元方法系统地分析了BCCT晶格超材料的压缩行为、变形模式、力学性能和失效机制,并通过压缩试验进行了验证。进行了参数分析,以研究包括体积分数、形状参数和材料性能在内的关键设计参数的影响。结果表明,BCCT晶格超材料通过将应力重新分布到支柱中心有效地消除了节点处的应力集中。这种重新分布将失效模式从剪切带失效转变为层状坍塌,而支柱在压缩下保持以弯曲为主的变形机制。BCCT晶格超材料的力学性能受形状因子的显著影响。此外,具有不同体积分数和材料的BCCT晶格超材料的力学性能始终优于BCC晶格超材料,这验证了具有锥形棱柱支柱的晶格超材料在潜在轻量化应用中的有效性和适应性。