Hamieh Tayssir
Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France.
Materials (Basel). 2024 Dec 28;18(1):81. doi: 10.3390/ma18010081.
A new methodology based on the Hamieh thermal model was applied for the determination of the surface properties of solid surfaces. The new approach consisted of the accurate quantification of the London dispersive surface energy of materials using the two-dimensional inverse gas chromatography technique at infinite dilution. This technique used the notion of the net retention volume of adsorbed molecules on the solid catalysts, allowing the determination of the free energy of adsorption. The Hamieh thermal model proving the temperature effect on the surface area of organic molecules adsorbed on H-β-zeolite/rhodium catalysts at different rhodium percentages was used to determine the accurate values of the London dispersive surface energy of solid surfaces at different temperatures. This new method also allowed a precise evaluation of the dispersive adhesion work, dispersive surface enthalpy, and entropy of adsorption of n-alkanes adsorbed on the catalysts. In this paper, the London dispersive surface energy and adhesion work of H-β-zeolite-supported rhodium catalysts were determined using the free energy of adsorbed molecules obtained from the two-dimensional inverse gas chromatography technique at infinite dilution. It was proved that the London dispersive surface energy strongly depended on the temperature and the rhodium percentage, while the dispersive adhesion work of n-alkanes adsorbed on H-β-zeolite/rhodium catalysts was proved to be a function of the temperature, rhodium percentage, and the carbon atom number of the n-alkanes.
一种基于哈米耶热模型的新方法被应用于测定固体表面的性质。这种新方法包括在无限稀释条件下使用二维反相气相色谱技术准确量化材料的伦敦色散表面能。该技术利用了固体催化剂上吸附分子的净保留体积的概念,从而能够测定吸附自由能。哈米耶热模型证明了温度对不同铑含量的H-β沸石/铑催化剂上吸附的有机分子表面积的影响,该模型被用于确定不同温度下固体表面伦敦色散表面能的准确值。这种新方法还能够精确评估吸附在催化剂上的正构烷烃的色散粘附功、色散表面焓和吸附熵。在本文中,利用在无限稀释条件下二维反相气相色谱技术获得的吸附分子自由能,测定了H-β沸石负载铑催化剂的伦敦色散表面能和粘附功。结果表明,伦敦色散表面能强烈依赖于温度和铑含量,而吸附在H-β沸石/铑催化剂上的正构烷烃的色散粘附功是温度、铑含量和正构烷烃碳原子数的函数。