Suppr超能文献

使用3D打印细丝在多孔材料中构建湿度传感器。

The Use of 3D Printing Filaments to Build Moisture Sensors in Porous Materials.

作者信息

Paśnikowska-Łukaszuk Magdalena, Szulżyk-Cieplak Joanna, Wlazło Magda, Zubrzycki Jarosław, Łazuka Ewa, Urzędowski Arkadiusz, Suchorab Zbigniew

机构信息

Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland.

Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland.

出版信息

Materials (Basel). 2024 Dec 30;18(1):115. doi: 10.3390/ma18010115.

Abstract

This study explores the application of materials used in 3D printing to manufacture the housings of non-invasive sensors employed in measurements using a TDR (Time Domain Reflectometry) meter. The research investigates whether sensors designed with 3D printing technology can serve as viable alternatives to conventional invasive and non-invasive sensors. This study focuses on innovative approaches to designing humidity sensors, utilizing Fused Deposition Modeling (FDM) technology to create housings for non-invasive sensors compatible with TDR devices. The paper discusses the use of 3D modeling technology in sensor design, with particular emphasis on materials used in 3D printing, notably polylactic acid (PLA). Environmental factors, such as moisture in building materials, are characterized, and the need for dedicated sensor designs is highlighted. The software utilized in the 3D modeling and printing processes is also described. The Materials and Methods Section provides a detailed account of the construction process for the non-invasive sensor housing and the preparation for moisture measurement in silicate materials using the designed sensor. A prototype sensor was successfully fabricated through 3D printing. Using the designed sensor, measurements were conducted on silicate samples soaked in aqueous solutions with water absorption levels ranging from 0% to 10%. Experimental validation involved testing silicate samples with the prototype sensor to evaluate its effectiveness. The electrical permittivity of the material was calculated, and the root-mean-square error (RMSE) was determined using classical computational methods and machine learning techniques. The RMSE obtained using the classical method was 0.70. The results obtained were further analyzed using machine learning models, including Gaussian Process Regression (GPR) and Support Vector Machine (SVM). The GPR model achieved an RMSE of 0.15, while the SVM model yielded an RMSE of 0.25. These findings confirm the sensor's effectiveness and its potential for further research and practical applications.

摘要

本研究探讨了3D打印所用材料在制造用于使用时域反射仪(TDR)进行测量的非侵入式传感器外壳方面的应用。该研究调查了采用3D打印技术设计的传感器是否可作为传统侵入式和非侵入式传感器的可行替代品。本研究聚焦于湿度传感器设计的创新方法,利用熔融沉积建模(FDM)技术为与TDR设备兼容的非侵入式传感器创建外壳。本文讨论了3D建模技术在传感器设计中的应用,特别强调了3D打印中使用的材料,尤其是聚乳酸(PLA)。对建筑材料中的水分等环境因素进行了表征,并强调了专用传感器设计的必要性。还描述了3D建模和打印过程中使用的软件。材料与方法部分详细介绍了非侵入式传感器外壳的构建过程以及使用设计的传感器对硅酸盐材料进行水分测量的准备工作。通过3D打印成功制造了一个原型传感器。使用设计的传感器对浸泡在吸水率范围为0%至10%的水溶液中的硅酸盐样品进行了测量。实验验证包括使用原型传感器测试硅酸盐样品以评估其有效性。计算了材料的介电常数,并使用经典计算方法和机器学习技术确定了均方根误差(RMSE)。使用经典方法获得的RMSE为0.70。使用包括高斯过程回归(GPR)和支持向量机(SVM)在内的机器学习模型对所得结果进行了进一步分析。GPR模型的RMSE为0.15,而SVM模型的RMSE为0.25。这些发现证实了该传感器的有效性及其进一步研究和实际应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98d9/11722160/b2278c68fcd2/materials-18-00115-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验