Suppr超能文献

基于传感器信号的机器学习在铣削加工表面粗糙度预测中的应用。

Application of Machine Learning to the Prediction of Surface Roughness in the Milling Process on the Basis of Sensor Signals.

作者信息

Antosz Katarzyna, Kozłowski Edward, Sęp Jarosław, Prucnal Sławomir

机构信息

Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland.

Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland.

出版信息

Materials (Basel). 2025 Jan 2;18(1):148. doi: 10.3390/ma18010148.

Abstract

This article presents an investigation of the use of machine learning methodologies for the prediction of surface roughness in milling operations, using sensor data as the primary source of information. The sensors, which included current transformers, a microphone, and displacement sensors, captured comprehensive machining signals at a frequency of 10 kHz. The signals were subjected to preprocessing using the Savitzky-Golay filter, with the objective of isolating relevant moments of active material machining and reducing noise. Two machine learning models, namely Elastic Net and neural networks, were employed for the prediction purposes. The Elastic Net model demonstrated effective handling of multicollinearity and reduction in the data dimensionality, while the neural networks, utilizing the ReLU activation function, exhibited the capacity to capture complex, nonlinear patterns. The models were evaluated using the coefficient of determination (R²), which yielded values of 0.94 for Elastic Net and 0.95 for neural networks, indicating a high degree of predictive accuracy. These findings illustrate the potential of machine learning to optimize manufacturing processes by facilitating precise predictions of surface roughness. Elastic Net demonstrated its utility in reducing dimensionality and selecting features, while neural networks proved effective in modeling complex data. Consequently, these methods exemplify the efficacy of integrating data-driven approaches with robust predictive models to improve the quality and efficiency of surface.

摘要

本文介绍了一项利用机器学习方法预测铣削加工中表面粗糙度的研究,将传感器数据作为主要信息来源。这些传感器包括电流互感器、麦克风和位移传感器,以10kHz的频率采集全面的加工信号。使用Savitzky-Golay滤波器对信号进行预处理,目的是分离出有效材料加工的相关时刻并降低噪声。为了进行预测,采用了两种机器学习模型,即弹性网络和神经网络。弹性网络模型展示了对多重共线性的有效处理以及数据维度的降低,而利用ReLU激活函数的神经网络则表现出捕捉复杂非线性模式的能力。使用决定系数(R²)对模型进行评估,弹性网络的R²值为0.94,神经网络的R²值为0.95,表明预测精度很高。这些发现说明了机器学习通过促进对表面粗糙度的精确预测来优化制造过程的潜力。弹性网络在降低维度和选择特征方面展示了其效用,而神经网络在对复杂数据建模方面证明是有效的。因此,这些方法例证了将数据驱动方法与强大的预测模型相结合以提高表面质量和效率的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1a/11721032/673b2cf016a1/materials-18-00148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验