Peta Katarzyna
Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
Materials (Basel). 2025 Jan 5;18(1):191. doi: 10.3390/ma18010191.
Surface wettability, defined by the contact angle, describes the ability of a liquid to spread over, absorb or adhere to a solid surface. Surface wetting analysis is important in many applications, such as lubrication, heat transfer, painting and wherever liquids interact with solid surfaces. The behavior of liquids on surfaces depends mainly on the texture and chemical properties of the surface. Therefore, these studies show the possibility of modeling surface wettability by adjusting the parameters of the surface texturing process. The prediction of the contact angle describing the wettability of the surface was performed using artificial neural networks. In order to select the most effective prediction model, the activation functions of neurons, the number of hidden layers and the network training algorithms were changed. The neural network model presented in these studies is capable of predicting the contact angle with an efficiency defined by the coefficient of determination R between real and predicted contact angles of over 0.9.
由接触角定义的表面润湿性描述了液体在固体表面上铺展、吸收或附着的能力。表面润湿分析在许多应用中都很重要,例如润滑、传热、涂漆以及液体与固体表面相互作用的任何地方。液体在表面上的行为主要取决于表面的纹理和化学性质。因此,这些研究表明通过调整表面纹理化过程的参数来模拟表面润湿性是可能的。使用人工神经网络对描述表面润湿性的接触角进行了预测。为了选择最有效的预测模型,改变了神经元的激活函数、隐藏层的数量和网络训练算法。这些研究中提出的神经网络模型能够以真实接触角与预测接触角之间的决定系数R定义的效率预测接触角,该系数超过0.9。