Suk Ho, Kim Shiho
Seamless Trans-X Lab (STL), School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea.
BK21 Graduate Program in Intelligent Semiconductor Technology, Yonsei University, Incheon 21983, Republic of Korea.
Sensors (Basel). 2025 Jan 2;25(1):217. doi: 10.3390/s25010217.
In the domain of autonomous driving, trajectory prediction plays a pivotal role in ensuring the safety and reliability of autonomous systems, especially when navigating complex environments. Unfortunately, trajectory prediction suffers from uncertainty problems due to the randomness inherent in the driving environment, but uncertainty quantification in trajectory prediction is not widely addressed, and most studies rely on deep ensembles methods. This study presents a novel uncertainty-aware multimodal trajectory prediction (UAMTP) model that quantifies aleatoric and epistemic uncertainties through a single forward inference. Our approach employs deterministic single forward pass methods, optimizing computational efficiency while retaining robust prediction accuracy. By decomposing trajectory prediction into velocity and yaw components and quantifying uncertainty in both, the UAMTP model generates multimodal predictions that account for environmental randomness and intention ambiguity. Evaluation on datasets collected by CARLA simulator demonstrates that our model not only outperforms Deep Ensembles-based multimodal trajectory prediction method in terms of accuracy such as minFDE and miss rate metrics but also offers enhanced time to react for collision avoidance scenarios. This research marks a step forward in integrating efficient uncertainty quantification into multimodal trajectory prediction tasks within resource-constrained autonomous driving platforms.
在自动驾驶领域,轨迹预测对于确保自动驾驶系统的安全性和可靠性起着关键作用,尤其是在复杂环境中导航时。不幸的是,由于驾驶环境中固有的随机性,轨迹预测存在不确定性问题,但轨迹预测中的不确定性量化并未得到广泛关注,并且大多数研究依赖于深度集成方法。本研究提出了一种新颖的不确定性感知多模态轨迹预测(UAMTP)模型,该模型通过单次前向推理来量化偶然不确定性和认知不确定性。我们的方法采用确定性单次前向传递方法,在保持强大预测准确性的同时优化计算效率。通过将轨迹预测分解为速度和偏航分量并对两者的不确定性进行量化,UAMTP模型生成了考虑环境随机性和意图模糊性的多模态预测。在由CARLA模拟器收集的数据集上进行的评估表明,我们的模型不仅在诸如最小最终位移误差(minFDE)和遗漏率等准确性指标方面优于基于深度集成的多模态轨迹预测方法,而且在碰撞避免场景中还提供了更长的反应时间。这项研究标志着在资源受限的自动驾驶平台中将高效的不确定性量化集成到多模态轨迹预测任务方面向前迈出了一步。