Suppr超能文献

基于视频的塑料袋抓取动作识别:一个新的视频数据集及基线模型的比较研究

Video-Based Plastic Bag Grabbing Action Recognition: A New Video Dataset and a Comparative Study of Baseline Models.

作者信息

Low Pei Jing, Ng Bo Yan, Mahzan Nur Insyirah, Tian Jing, Leung Cheung-Chi

机构信息

NUS-ISS, National University of Singapore, Singapore 119615, Singapore.

出版信息

Sensors (Basel). 2025 Jan 4;25(1):255. doi: 10.3390/s25010255.

Abstract

Recognizing the action of plastic bag taking from CCTV video footage represents a highly specialized and niche challenge within the broader domain of action video classification. To address this challenge, our paper introduces a novel benchmark video dataset specifically curated for the task of identifying the action of grabbing a plastic bag. Additionally, we propose and evaluate three distinct baseline approaches. The first approach employs a combination of handcrafted feature extraction techniques and a sequential classification model to analyze motion and object-related features. The second approach leverages a multiple-frame (CNN) to exploit temporal and spatial patterns in the video data. The third approach explores a 3D CNN-based deep learning model, which is capable of processing video data as volumetric inputs. To assess the performance of these methods, we conduct a comprehensive comparative study, demonstrating the strengths and limitations of each approach within this specialized domain.

摘要

从央视视频片段中识别拿取塑料袋的动作,在更广泛的动作视频分类领域中是一项高度专业化且细分的挑战。为应对这一挑战,我们的论文引入了一个专门为识别抓取塑料袋动作任务精心策划的新型基准视频数据集。此外,我们提出并评估了三种不同的基线方法。第一种方法采用手工特征提取技术和序列分类模型的组合来分析运动和与物体相关的特征。第二种方法利用多帧卷积神经网络(CNN)来挖掘视频数据中的时空模式。第三种方法探索基于3D CNN的深度学习模型,该模型能够将视频数据作为体数据输入进行处理。为评估这些方法的性能,我们进行了全面的比较研究,展示了每种方法在这个专业领域的优势和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9e9/11723439/5d27b4595cba/sensors-25-00255-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验