Suppr超能文献

DisGeNet:一个以疾病为中心的疾病与各种相关基因之间的相互作用数据库。

DisGeNet: a disease-centric interaction database among diseases and various associated genes.

作者信息

Hu Yaxuan, Guo Xingli, Yun Yao, Lu Liang, Huang Xiaotai, Jia Songwei

机构信息

School of Computer Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, China.

出版信息

Database (Oxford). 2025 Jan 11;2025. doi: 10.1093/database/baae122.

Abstract

The pathogenesis of complex diseases is intricately linked to various genes and network medicine has enhanced understanding of diseases. However, most network-based approaches ignore interactions mediated by noncoding RNAs (ncRNAs) and most databases only focus on the association between genes and diseases. Based on the mentioned questions, we have developed DisGeNet, a database focuses not only on the disease-associated genes but also on the interactions among genes. Here, the associations between diseases and various genes, as well as the interactions among these genes are integrated into a disease-centric network. As a result, there are a total of 502 688 interactions/associations involving 6697 diseases, 5780 lncRNAs (long noncoding RNAs), 16 135 protein-coding genes, and 2610 microRNAs stored in DisGeNet. These interactions/associations can be categorized as protein-protein, lncRNA-disease, microRNA-gene, microRNA-disease, gene-disease, and microRNA-lncRNA. Furthermore, as users input name/ID of diseases/genes for search, the interactions/associations about the search content can be browsed as a list or viewed in a local network-view. Database URL: https://disgenet.cn/.

摘要

复杂疾病的发病机制与多种基因有着错综复杂的联系,而网络医学增进了人们对疾病的理解。然而,大多数基于网络的方法忽略了由非编码RNA(ncRNA)介导的相互作用,并且大多数数据库仅关注基因与疾病之间的关联。基于上述问题,我们开发了DisGeNet数据库,它不仅关注疾病相关基因,还关注基因之间的相互作用。在此,疾病与各种基因之间的关联以及这些基因之间的相互作用被整合到一个以疾病为中心的网络中。结果,DisGeNet中总共存储了涉及6697种疾病、5780种长链非编码RNA(lncRNA)、16135个蛋白质编码基因和2610个微小RNA的502688种相互作用/关联。这些相互作用/关联可分为蛋白质-蛋白质、lncRNA-疾病、微小RNA-基因、微小RNA-疾病、基因-疾病和微小RNA-lncRNA。此外,当用户输入疾病/基因的名称/ID进行搜索时,关于搜索内容的相互作用/关联可以列表形式浏览或在本地网络视图中查看。数据库网址:https://disgenet.cn/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a78/11724190/2e1bf021b659/baae122f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验