Suppr超能文献

通过三线态活化策略实现苯并噻唑杂环的光催化直接硼化反应。

Photocatalytic Direct Borylation of Benzothiazole Heterocycles via a Triplet Activation Strategy.

作者信息

Chen Ze-Le, Empel Claire, Xie Yang, Koenigs Rene M, Xuan Jun

机构信息

Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.

出版信息

Org Lett. 2025 Jan 24;27(3):892-897. doi: 10.1021/acs.orglett.4c04667. Epub 2025 Jan 11.

Abstract

Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency. Despite significant advances, the borylation of heterocycles remains an ongoing challenge with great potential for applications in chemical synthesis. Herein, we describe a photocatalytic C-H borylation reaction of five-membered ring heterocycles by employing a stable N-heterocyclic carbene borane as the borylating reagent and a photoredox catalyst. Under green and mild conditions, C-H borylation was achieved on a series of benzo-fused five-membered heterocyclic compounds. Further studies demonstrate the utility of this approach for applications in pharmaceutical and agrochemical research.

摘要

硼化合物在有机化学、制药和材料科学中有着广泛的应用。其中,硼化杂环作为通用合成子,可通过偶联或自由基过程构建新的碳-碳或碳-杂原子键。这种直接碳-氢键硼化反应的方法对于减少合成步骤数量、废弃物量以及提高效率具有很高的合成价值。尽管取得了重大进展,但杂环的硼化仍然是一个持续存在的挑战,在化学合成中具有巨大的应用潜力。在此,我们描述了一种以稳定的氮杂环卡宾硼烷作为硼化试剂和光氧化还原催化剂,对五元环杂环进行光催化碳-氢键硼化反应的方法。在绿色温和的条件下,一系列苯并稠合五元杂环化合物实现了碳-氢键硼化。进一步的研究证明了该方法在药物和农用化学品研究中的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验