Pool Lisa, van Wijk Stan W, van Schie Mathijs S, Taverne Yannick J H J, de Groot Natasja M S, Brundel Bianca J J M
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Translational Electrophysiology Unit, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands.
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
JACC Clin Electrophysiol. 2025 Feb;11(2):321-332. doi: 10.1016/j.jacep.2024.10.008. Epub 2025 Jan 8.
Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.
This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.
High-sensitivity long-run real-time PCR was performed on mitochondrial (ND1) and nuclear (P53) DNA from atrial tissue samples from paroxysmal (PAF), persistent (PeAF), and longstanding persistent (LS-PeAF) AF, and sinus rhythm (SR) patients (n = 83). PicoGreen assay and quantitative polymerase chain reaction were used on circulating free DNA (cfDNA) markers (total cfDNA, β-globin, ND1, and P53) in blood samples of 70 patients with AF or SR. High-resolution epicardial mapping of the atria (n = 48) was conducted to quantify electrical conduction abnormalities.
The number of DNA lesions gradually and significantly increased in PAF and PeAF and in patients with <3 years of AF compared with SR. In SR, the quantity of nuclear DNA damage significantly correlated with the proportion of fractionated potentials. Mitochondrial DNA lesions correlated with slower conduction velocity and lower potential amplitudes in AF samples. Also, mitochondrial cfDNA levels decreased in patients with >3 years of AF compared with <3 years of AF (P = 0.004).
The quantity of DNA lesions in atrial tissue samples is associated with atrial conduction abnormalities and stage of AF. Serum DNA damage markers discriminate short- from long-term AF. Therefore, the quantity of DNA damage may have diagnostic value in clinical AF management.
房颤(AF)持续存在与分子重塑有关,这种重塑会加剧心房组织中的电传导异常。先前的研究表明DNA损伤是房颤的分子驱动因素。
本研究旨在探讨心房组织和血液样本中DNA损伤作为电传导异常患病率和房颤分期指标的诊断价值。
对阵发性房颤(PAF)、持续性房颤(PeAF)、长期持续性房颤(LS-PeAF)和窦性心律(SR)患者(n = 83)的心房组织样本中的线粒体(ND1)和核(P53)DNA进行高灵敏度长期实时PCR检测。对70例房颤或SR患者的血液样本中的循环游离DNA(cfDNA)标志物(总cfDNA、β-珠蛋白、ND1和P53)进行PicoGreen检测和定量聚合酶链反应。对心房进行高分辨率心外膜标测(n = 48)以量化电传导异常。
与SR相比,PAF和PeAF以及房颤病程<3年的患者中DNA损伤数量逐渐且显著增加。在SR中,核DNA损伤数量与碎裂电位比例显著相关。线粒体DNA损伤与房颤样本中较慢的传导速度和较低的电位幅度相关。此外,房颤病程>3年的患者与<3年的患者相比,线粒体cfDNA水平降低(P = 0.004)。
心房组织样本中的DNA损伤数量与心房传导异常和房颤分期有关。血清DNA损伤标志物可区分短期和长期房颤。因此,DNA损伤数量可能在临床房颤管理中具有诊断价值。