Suppr超能文献

CircWaveDL:基于一种新的监督张量字典学习对黄斑异常进行分类的光学相干断层扫描图像建模

CircWaveDL: Modeling of optical coherence tomography images based on a new supervised tensor-based dictionary learning for classification of macular abnormalities.

作者信息

Arian Roya, Vard Alireza, Kafieh Rahele, Plonka Gerlind, Rabbani Hossein

机构信息

Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran; Department of Engineering, Durham University, South Road, Durham, UK.

Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.

出版信息

Artif Intell Med. 2025 Feb;160:103060. doi: 10.1016/j.artmed.2024.103060. Epub 2024 Dec 24.

Abstract

Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data. To address this limitation, tensor-based DL approaches have been introduced. In this study, we present a novel tensor-based DL algorithm, CircWaveDL, for OCT classification, where both the training data and the dictionary are modeled as higher-order tensors. We named our approach CircWaveDL to reflect the use of CircWave atoms for dictionary initialization, rather than random initialization. CircWave has previously shown effectiveness in OCT classification, making it a fitting basis function for our DL method. The algorithm employs CANDECOMP/PARAFAC (CP) decomposition to factorize each tensor into lower dimensions. We then learn a sub-dictionary for each class using its respective training tensor. For testing, a test tensor is reconstructed with each sub-dictionary, and each test B-scan is assigned to the class that yields the minimal residual error. To evaluate the model's generalizability, we tested it across three distinct databases. Additionally, we introduce a new heatmap generation technique based on averaging the most significant atoms of the learned sub-dictionaries. This approach highlights that selecting an appropriate sub-dictionary for reconstructing test B-scans improves reconstructions, emphasizing the distinctive features of different classes. CircWaveDL demonstrated strong generalizability across external validation datasets, outperforming previous classification methods. It achieved accuracies of 92.5 %, 86.1 %, and 89.3 % on datasets 1, 2, and 3, respectively, showcasing its efficacy in OCT image classification.

摘要

对光学相干断层扫描(OCT)图像进行建模对于众多图像处理应用至关重要,有助于眼科医生早期发现黄斑异常。基于稀疏表示的模型,尤其是字典学习(DL),在图像建模中起着关键作用。传统的DL方法通常将高阶张量转换为向量,然后将它们聚合为矩阵,这忽略了数据固有的多维结构。为了解决这一局限性,已引入基于张量的DL方法。在本研究中,我们提出了一种用于OCT分类的基于张量的新型DL算法CircWaveDL,其中训练数据和字典均被建模为高阶张量。我们将我们的方法命名为CircWaveDL,以反映使用CircWave原子进行字典初始化,而不是随机初始化。CircWave先前已在OCT分类中显示出有效性,使其成为我们DL方法的合适基函数。该算法采用CANDECOMP/PARAFAC(CP)分解将每个张量分解为更低维度。然后,我们使用其各自的训练张量为每个类别学习一个子字典。在测试时,使用每个子字典重建测试张量,并将每个测试B扫描分配给产生最小残差误差的类别。为了评估模型的泛化能力,我们在三个不同的数据库上对其进行了测试。此外,我们引入了一种基于对学习到的子字典中最重要的原子进行平均的新热图生成技术。这种方法突出表明,选择合适的子字典来重建测试B扫描可以改善重建效果,强调了不同类别的独特特征。CircWaveDL在外部验证数据集上表现出很强的泛化能力,优于先前的分类方法。它在数据集1、2和3上分别达到了92.5%、86.1%和89.3%的准确率,展示了其在OCT图像分类中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验