Suppr超能文献

一种基于局部结构识别复杂网络中影响力节点的新型投票方法。

A novel voting measure for identifying influential nodes in complex networks based on local structure.

作者信息

Li Haoyang, Wang Xing, Chen You, Cheng Siyi, Lu Dejiang

机构信息

Air Force Engineering University, Xi'an, 710038, Shaanxi, China.

出版信息

Sci Rep. 2025 Jan 11;15(1):1693. doi: 10.1038/s41598-025-85332-4.

Abstract

Identifying influential nodes in real networks is significant in studying and analyzing the structural as well as functional aspects of networks. VoteRank is a simple and effective algorithm to identify high-spreading nodes. The accuracy and monotonicity of the VoteRank algorithm are poor as the network topology fails to be taken into account.Given the nodes' attributes and neighborhood structure, this paper put forward an algorithm based on the Edge Weighted VoteRank (EWV) for identifying influential nodes in the network. The proposed algorithm draws inspiration from human voting behavior and expresses the attractiveness of nodes to their first-order neighborhood using the weights of connecting edges. Similarity between nodes is introduced into the voting process, further enhancing the accuracy of the method. Additionally, this EWV algorithm addresses the problem of influential node clustering by reducing the voting ability of nodes in the second-order neighborhood of the most influential nodes. The validity of the presented algorithm is verified through experiments conducted on 12 different real networks of various sizes and structures, directly comparing it with 7 competing algorithms.Empirical results indicate a superiority of the presented algorithm over the remaining seven competing algorithms with respect to node differentiation ability, effectiveness, and ranked list accuracy.

摘要

识别真实网络中的有影响力节点对于研究和分析网络的结构及功能方面具有重要意义。VoteRank是一种用于识别高传播节点的简单有效算法。由于未考虑网络拓扑结构,VoteRank算法的准确性和单调性较差。考虑到节点的属性和邻域结构,本文提出了一种基于边加权VoteRank(EWV)的算法,用于识别网络中的有影响力节点。该算法借鉴了人类投票行为,利用连接边的权重来表示节点对其一阶邻域的吸引力。将节点之间的相似性引入投票过程,进一步提高了该方法的准确性。此外,EWV算法通过降低最有影响力节点二阶邻域内节点的投票能力,解决了有影响力节点聚类的问题。通过在12个不同规模和结构的真实网络上进行实验,将该算法与7种竞争算法直接进行比较,验证了所提算法的有效性。实证结果表明,在所提算法在节点区分能力、有效性和排名列表准确性方面优于其余七种竞争算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/054e/11724906/eff3516f1511/41598_2025_85332_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验