Suppr超能文献

通过工程化钒空位来加速离子动力学以实现高性能锌离子电池

Engineering vanadium vacancies to accelerate ion kinetics for high performance zinc ion battery.

作者信息

Liu Xiaoqing, Meng Lingshen, Xu Ze, Wu Jinjiang, Wang Kexin, Zhang Lixin, Yu Chuang, Li Liping

机构信息

School of Chemistry and Chemical Engineering, North University of China, Shanxi Key Laboratory of High-Performance Battery Materials and Devices, Taiyuan 030051, PR China.

Winterthurstrasse 190, CH-8057 Zurich, Switzerland.

出版信息

J Colloid Interface Sci. 2025 Apr 15;684(Pt 1):439-448. doi: 10.1016/j.jcis.2025.01.027. Epub 2025 Jan 7.

Abstract

Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan. The structural analyses of X-ray diffraction data refinement and X-ray photoelectron spectroscopy confirm that vanadium vacancies adjust the valence of vanadium, simultaneously shrink unit cell, thus improving structural stability. Theoretical calculations and the corresponding electrochemical measurements elucidate vacancy diffusion mechanism effectively enhance Zn diffusion and electron transfer by reduced Zn migration barrier and charge transfer activation energy. The resulted vacancy-rich cathode exhibits an improved electrochemical stability and kinetics, yielding unprecedented cycling performance at low currents (332 mA h g after 200 cycles at 0.1 A g) and excellent rate capability of 184 mA h g at 20 A g as well as long-term stability at 20 A g. This work is anticipated to promote the development of next generation AZIBs and offer distinguishing inspiration for design of electrode systems.

摘要

二氧化钒(VO)因其源于多电子转移反应的理想理论比容量和特殊晶体结构,在水系锌离子电池(AZIBs)中受到了广泛关注。然而,缓慢的电化学动力学导致其电化学存储性能较差。在此,通过在隧道状VO中引入丰富的钒空位来促进锌扩散,提高电荷存储容量并延长使用寿命。X射线衍射数据精修和X射线光电子能谱的结构分析证实,钒空位调整了钒的价态,同时收缩了晶胞,从而提高了结构稳定性。理论计算和相应的电化学测量表明,空位扩散机制通过降低锌迁移势垒和电荷转移活化能,有效地增强了锌扩散和电子转移。所得富含空位的阴极表现出改善的电化学稳定性和动力学,在低电流下(0.1 A g下200次循环后为332 mA h g)具有前所未有的循环性能,在20 A g下具有184 mA h g的优异倍率性能以及在20 A g下的长期稳定性。这项工作有望推动下一代AZIBs的发展,并为电极系统的设计提供独特的灵感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验