Dharman Ranjith Kumar, Mariappan Athibala, Oh Tae Hwan
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Environ Res. 2025 Mar 1;268:120829. doi: 10.1016/j.envres.2025.120829. Epub 2025 Jan 10.
The increasing contamination of water bodies with pharmaceutical pollutants, particularly acetaminophen, necessitates innovative and efficient remediation strategies. This study introduces a novel AgVO@MoO (AV@MoO) nanorod heterostructure synthesized via a hydrothermal process designed to enrich the photocatalytic degradation of antibiotic pollutant using visible light irradiation. The bandgap energy of the optimum AV@MoO-3 heterostructure is 2.62 eV which is lower than pristine MoO nanorod (3.16 eV). The integration of AgVO into MoO effectively reduced the bandgap energy and created beneficial surface defects, significantly boosting the visible-light absorption and photocatalytic activity. The optimized AV@MoO-3 nanorod heterostructure achieved a remarkable photocatalytic degradation efficiency of 97.21% for acetaminophen, with a degradation rate constant of 0.0298 min, outperforming MoO (0.003 min) and AgVO (0.004 min) alone by factors of 9.9 and 7.4, respectively. Transient photocurrent and electrochemical impedance spectroscopy analyses confirmed the enhanced charge separation and reduced recombination. This study provides a comprehensive understanding of bandgap engineering and defect manipulation in heterostructures and highlights the potential for advanced water purification applications.
水体受到药物污染物尤其是对乙酰氨基酚的污染日益严重,这就需要创新且高效的修复策略。本研究介绍了一种通过水热法合成的新型AgVO@MoO(AV@MoO)纳米棒异质结构,旨在利用可见光辐照强化抗生素污染物的光催化降解。最佳AV@MoO-3异质结构的带隙能量为2.62电子伏特,低于原始MoO纳米棒(3.16电子伏特)。将AgVO整合到MoO中有效降低了带隙能量并产生了有益的表面缺陷,显著提高了可见光吸收和光催化活性。优化后的AV@MoO-3纳米棒异质结构对对乙酰氨基酚的光催化降解效率高达97.21%,降解速率常数为0.0298分钟,分别比单独的MoO(0.003分钟)和AgVO(0.004分钟)高出9.9倍和7.4倍。瞬态光电流和电化学阻抗谱分析证实了电荷分离增强且复合减少。本研究全面理解了异质结构中的带隙工程和缺陷调控,并突出了其在高级水净化应用中的潜力。