Liu Yu, Liu Hongxiao, Qian Junning, Luan Jian, Mu Yongbiao, Xiao Cailin, Zhang Qing, Lam Su Shiung, Li Wenjia, Zeng Lin
College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2025 Jan 22;17(3):5026-5037. doi: 10.1021/acsami.4c19881. Epub 2025 Jan 12.
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach. Cu-PW served as a precursor to construct a composite electrocatalyst featuring a heterointerface between CuWO and WO (CuWO/WO) through pyrolysis. The CuWO/WO heterojunction exhibits an impressive HO selectivity of 91.84% at 0.5 V, marking a 19.65% improvement compared to the pristine Cu-PW. Furthermore, the CuWO/WO catalyst demonstrates exceptional stability, maintaining continuous operation for 29 h. At 0.1 V, it delivers a hydrogen peroxide yield of 1537.8 mmol g h, with a Faraday efficiency (FE) of 85%. Additionally, this catalyst effectively degrades methyl blue, achieving a 95% removal from an aqueous system within 30 min. Theoretical analysis further corroborates the high electroactivity of CuWO/WO heterojunction structure. The Cu-O-W bridge formed during the reaction facilitates interfacial electron transport and enhances the role of the W-O bond in proton adsorption and transfer kinetics. This strong interfacial coupling in CuWO/WO promotes electron transfer and the formation of *OOH intermediates, thereby favoring hydrogen peroxide generation. Hence, the as-prepared CuWO/WO demonstrates great potential as an efficient electrocatalyst for the green synthesis of hydrogen peroxide, exhibiting high efficiency as a two-electron oxygen reduction reaction catalyst. This work offers a new approach for fabricating CuWO/WO electrocatalyst with high electroactivity and selectivity, paving the way for cost-effective and sustainable hydrogen peroxide production, significantly reducing reliance on the conventional anthraquinone process.
将氧气电催化转化为过氧化氢为可持续能源生产提供了一条有前景的途径。然而,开发对过氧化氢合成具有高活性、稳定性和成本效益的催化剂仍然是一项重大挑战。在本研究中,采用水热法合成了一种新型的基于多酸的金属有机配位化合物(Cu-PW)。Cu-PW作为前驱体,通过热解构建了一种具有CuWO和WO之间异质界面的复合电催化剂(CuWO/WO)。CuWO/WO异质结在0.5 V时表现出令人印象深刻的91.84%的HO选择性,与原始Cu-PW相比提高了19.65%。此外,CuWO/WO催化剂表现出卓越的稳定性,能够连续运行29小时。在0.1 V时,它的过氧化氢产率为1537.8 mmol g h,法拉第效率(FE)为85%。此外,该催化剂能有效降解亚甲基蓝,在30分钟内实现了95%的水体去除率。理论分析进一步证实了CuWO/WO异质结结构的高电活性。反应过程中形成的Cu-O-W桥促进了界面电子传输,并增强了W-O键在质子吸附和转移动力学中的作用。CuWO/WO中这种强烈的界面耦合促进了电子转移和*OOH中间体的形成,从而有利于过氧化氢的生成。因此,所制备的CuWO/WO作为一种用于过氧化氢绿色合成的高效电催化剂具有巨大潜力,作为双电子氧还原反应催化剂表现出高效率。这项工作为制备具有高电活性和选择性的CuWO/WO电催化剂提供了一种新方法,为经济高效且可持续的过氧化氢生产铺平了道路,显著降低了对传统蒽醌法的依赖。