Suppr超能文献

鉴别慢性炎症性脱髓鞘性多发性神经病与相似疾病:统计建模的作用。

Distinguishing Chronic Inflammatory Demyelinating Polyneuropathy From Mimic Disorders: The Role of Statistical Modeling.

作者信息

Swart Grace, Skolka Michael P, Shelly Shahar, Lewis Richard A, Allen Jeffrey A, Dubey Divyanshu, Niu Zhiyv, Spies Judith, Laughlin Ruple S, Thakolwiboon Smathorn, Santilli Ashley R, Rashed Hebatallah, Mirman Igal, Swart Alexander, Berini Sarah E, Shouman Kamal, Pinto Marcus V, Mauermann Michelle L, Mills John R, Dyck P James B, Harmsen William S, Mandrekar Jay, Klein Christopher J

机构信息

Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.

Department of Neurology, Rambam Health Care Clinic, Haifa, Israel.

出版信息

J Peripher Nerv Syst. 2025 Mar;30(1):e12682. doi: 10.1111/jns.12682.

Abstract

BACKGROUND AND AIMS

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.

METHODS

Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables. The model was generated and validated utilizing total CIDP (n = 129) and mimics (n = 309); including (1) IgG4-nodopathies; (2) POEMS (polyneuropathy-organomegaly-endocrinopathy-monoclonal protein-skin changes); (3) anti-myelin-associated-glycoprotein; (4) paraneoplastic; (5) Waldenström B-cell lymphoma; (6) diabetic neuropathies; (7) amyloidosis; (8) Charcot-Marie-Tooth; (9) motor neuropathies/neuronopathies; and (10) idiopathic-inflammatory-myopathies.

RESULTS

We analyzed 9282 clinical and 51 408 electrophysiological data points. Univariate analysis identified 11 of 26 clinical variables with significant odds ratios. A multivariate regression model using four clinical and two electrophysiologic variables achieved 93% area-under-curve (95% CI 91-95): progression over 8 weeks (OR 40.66, 95% CI 5.31-311.36), absent autonomic involvement (OR 17.82, 95% CI 2.93-108.24), absent muscle atrophy (OR 16.65, 95% CI 3.27-84.73), proximal weakness (OR 3.63, 95% CI 1.58-8.33), ulnar motor conduction velocity slowing < 35.7 m/s (OR 5.21, 95% CI 2.13-12.76), and ulnar motor conduction block (OR 13.37, 95% CI 2.47-72.40). A web-based probability calculator (https://news.mayocliniclabs.com/cidp-calculator/) was developed, with 100% sensitivity and 68% specificity at a 92% probability threshold. Specificity improved to 93% when considering "red flags," electrophysiologic criteria, and laboratory testing.

INTERPRETATION

A probability calculator using clinical electrophysiological variables assists CIDP differentiation from mimics, with scores below 92% unlikely to have CIDP. The highest specificity is achieved by considering clinical "red flags," electrophysiologic demyelination, and laboratory testing.

摘要

背景与目的

慢性炎症性脱髓鞘性多发性神经根神经病(CIDP)难以与类似疾病相区分,误诊会导致静脉注射免疫球蛋白(IVIG)的过度使用。我们评估一种临床-电生理模型,以促进CIDP与类似神经病的鉴别诊断。

方法

依据欧洲神经病学学会/周围神经学会(EAN/PNS)2021年CIDP指南,我们得出了26个临床变量和144个神经传导变量。该模型利用全部CIDP患者(n = 129)和类似疾病患者(n = 309)进行构建和验证;类似疾病包括:(1)IgG4相关性结节病;(2)POEMS综合征(多发性神经病-脏器肿大-内分泌病-单克隆蛋白-皮肤改变);(3)抗髓鞘相关糖蛋白病;(4)副肿瘤性神经病;(5)华氏巨球蛋白血症B细胞淋巴瘤;(6)糖尿病性神经病;(7)淀粉样变性;(8)腓骨肌萎缩症;(9)运动神经病/神经元病;以及(10)特发性炎性肌病。

结果

我们分析了9282个临床数据点和51408个电生理数据点。单因素分析在26个临床变量中确定了11个具有显著优势比的变量。使用4个临床变量和2个电生理变量的多因素回归模型的曲线下面积达到了93%(95%置信区间91 - 95):8周内病情进展(优势比40.66,95%置信区间5.31 - 311.36)、无自主神经受累(优势比17.82,95%置信区间2.93 - 108.24)、无肌肉萎缩(优势比16.65,95%置信区间3.27 - 84.73)、近端肌无力(优势比3.63,95%置信区间1.58 - 8.33)、尺神经运动传导速度减慢< 35.7 m/s(优势比5.21,95%置信区间2.13 - 12.76)以及尺神经运动传导阻滞(优势比13.37,95%置信区间2.47 - 72.40)。开发了一个基于网络的概率计算器(https://news.mayocliniclabs.com/cidp - calculator/),在92%的概率阈值下,其敏感性为100%,特异性为68%。当考虑“警示信号”、电生理标准和实验室检查时,特异性提高到了93%。

解读

使用临床电生理变量的概率计算器有助于CIDP与类似疾病的鉴别,得分低于92%的患者不太可能患有CIDP。通过考虑临床“警示信号”、电生理脱髓鞘表现和实验室检查可实现最高的特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验