Hameed Rafel H, Hussein Rana Ali, Al-Salami Qusay H, Alomari Mohammed Azeez, Hassan Ahmed M, Alyousuf Farah Q A, Alqurashi Faris, Flayyih Mujtaba A
University of Babylon, College of Engineering, Mechanical Engineering Department, Iraq.
Power Mechanics Engineering Department, Al-Musaib Technical College, Al-Furat Al-Awsat Technical, Hillah, Babylon, Iraq.
Heliyon. 2024 Dec 13;11(1):e40960. doi: 10.1016/j.heliyon.2024.e40960. eCollection 2025 Jan 15.
The optimization of heat transfer in various engineering applications, such as thermal management systems and energy storage devices, remains a crucial challenge. This study aims to investigate the potential of Casson-based Cu-HO nanofluids in enhancing free convection heat transfer within complex geometries. The research examines the free convection heat transfer and fluid flow characteristics of a Casson-based Cu-HO nanofluid within a semi-parabolic enclosure that includes a wavy corrugated cylinder. Utilizing numerical simulations based on the Galerkin Finite Element Method, the study investigates the impact of different factors, including the Rayleigh number (10 ≤ Ra ≤ 10), Casson fluid parameter (0.1 ≤ γ ≤ 1), corrugation number (3 ≤ N ≤ 10), nanoparticle volume fraction (0 ≤ ≤ 0.15), and enclosure inclination angle (0° ≤ ζ ≤ 60°), on both heat transfer efficiency and flow patterns. The results reveal that increasing the Rayleigh number and Casson fluid parameter enhances heat transfer performance, with the average Nusselt number increasing by up to 165 % as Ra increases from 10 to 10. An optimal range of corrugation numbers is identified for maximizing heat transfer at higher Rayleigh numbers. The addition of nanoparticles significantly improves heat transfer, with a 20 % increase in the average Nusselt number observed at Ra = 10 when the nanoparticle volume fraction increases from 0 to 0.15. These findings provide valuable insights for designing more efficient thermal management systems in applications such as electronics cooling, solar thermal collectors, and heat exchangers, potentially leading to improved energy efficiency and performance in various industrial and technological sectors.
在各种工程应用中,如热管理系统和能量存储设备,优化传热仍然是一项关键挑战。本研究旨在探究基于卡森模型的铜-水纳米流体在增强复杂几何形状内自然对流换热方面的潜力。该研究考察了基于卡森模型的铜-水纳米流体在包含波浪形波纹圆柱的半抛物形封闭腔内的自然对流换热和流体流动特性。利用基于伽辽金有限元法的数值模拟,该研究调查了不同因素的影响,包括瑞利数(10≤Ra≤10)、卡森流体参数(0.1≤γ≤1)、波纹数(3≤N≤10)、纳米颗粒体积分数(0≤≤0.15)和封闭腔倾斜角(0°≤ζ≤60°)对传热效率和流动模式的影响。结果表明,增加瑞利数和卡森流体参数可提高传热性能,当瑞利数从10增加到10时,平均努塞尔数增加高达165%。确定了一个最佳波纹数范围,以在较高瑞利数下实现最大传热。添加纳米颗粒显著改善了传热,当纳米颗粒体积分数从0增加到0.15时,在瑞利数为10时观察到平均努塞尔数增加了20%。这些发现为设计更高效的热管理系统提供了有价值的见解,可应用于电子冷却、太阳能集热器和热交换器等领域,有望提高各工业和技术领域的能源效率和性能。