Dagar Mamta, De Anyesh, Lu Zhou, Matson Ellen M, Thorarinsdottir Agnes E
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
ACS Mater Au. 2024 Nov 27;5(1):200-210. doi: 10.1021/acsmaterialsau.4c00136. eCollection 2025 Jan 8.
The utilization of polyoxometalate-based materials is largely dictated by their redox properties. Detailed understanding of the thermodynamic and kinetic efficiency of charge transfer is therefore essential to the development of polyoxometalate-based systems for target applications. Toward this end, we report electrochemical studies of a series of heteroatom-doped Keggin-type polyoxotungstate clusters [PWO] ( ), [VWO] ( ), [P(VW)O] ( ), and [V(VW)O] ( ) to elucidate the role of the identity and spatial location of heteroatoms and overall cluster charge on the rate constants of electron transfer and redox reaction entropies. Electrochemical analyses of the polyoxotungstates reveal that the kinetics of electron transfer for W-based redox processes change as a function of the redox activity of the heteroatom, whereas the spatial location of the heteroatom dopant does not significantly impact the electrokinetics. Variable temperature cyclic voltammetry measurements in organic solutions containing noncoordinating electrolyte ions establish that redox reaction entropies are primarily dictated by the overall charge of the clusters. Specifically, the redox entropy exhibits a good linear relationship with the dielectric continuum function - ( = charge of oxidized species, = charge of reduced species). Finally, our experimental data do not show a prominent correlation between the kinetics of electron transfer and redox entropy, implying that the charge-transfer kinetics are not solely governed by structural reorganization. Taken together, these results highlight how structural and electronic parameters can influence the kinetics and thermodynamics of charge transfer in polyoxotungstates and provide insights into the design of polyoxometalate compounds with target redox properties.
基于多金属氧酸盐材料的应用很大程度上取决于它们的氧化还原性质。因此,详细了解电荷转移的热力学和动力学效率对于开发用于目标应用的基于多金属氧酸盐的体系至关重要。为此,我们报告了一系列杂原子掺杂的Keggin型多金属氧钨酸盐簇[PWO]( )、[VWO]( )、[P(VW)O]( )和[V(VW)O]( )的电化学研究,以阐明杂原子的身份和空间位置以及整体簇电荷对电子转移速率常数和氧化还原反应熵的作用。多金属氧钨酸盐的电化学分析表明,基于W的氧化还原过程的电子转移动力学随杂原子的氧化还原活性而变化,而杂原子掺杂剂的空间位置对电动学没有显著影响。在含有非配位电解质离子的有机溶液中进行的变温循环伏安测量表明,氧化还原反应熵主要由簇的整体电荷决定。具体而言,氧化还原熵与介电连续函数 - ( =氧化态物种的电荷, =还原态物种的电荷)呈现良好的线性关系。最后,我们的实验数据没有显示出电子转移动力学与氧化还原熵之间的显著相关性,这意味着电荷转移动力学并非仅由结构重组决定。综上所述,这些结果突出了结构和电子参数如何影响多金属氧钨酸盐中电荷转移的动力学和热力学,并为设计具有目标氧化还原性质的多金属氧酸盐化合物提供了见解。