Fanavoll Espen Vinge, Harrington David A, Sunde Svein, Seland Frode
Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
Chemistry Department, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
MethodsX. 2024 Dec 10;14:103096. doi: 10.1016/j.mex.2024.103096. eCollection 2025 Jun.
Construction and experimental validation of electrochemical cells with multiple electrodes in a microfluidic channel is described. Details of the fabrication of the electrodes and polydimethylsiloxane channel using soft lithography methods are given. Calibration of the collection efficiencies and transit times between electrodes validate the use of these cells for fast electrochemical detection of soluble species. Mass transit times between two electrodes down to 3 ms with a flow rate of 200 µL min are demonstrated. We demonstrate that there is an upper limit in the electrode width to channel height ratio depending on the electrolyte conductivity. A recommendation for the maximum electrode width to channel height ratio is presented. The electrode width is recommended to not exceed four times the height of the channel in 0.1 M HSO. We also demonstrate operating strategies to minimize the impact of oxygen in air, optimization of stepping motor syringe pump parameters, electrolyte switching, and show how to deposit catalyst particles on a channel electrode.•Fabrication methods are given for all components of microfluidic flow cells with multiple electrodes•Conditions are given for improved operation, including geometry, pumping, and electrical parameters.
本文描述了微流控通道中具有多个电极的电化学池的构建及实验验证。给出了使用软光刻方法制造电极和聚二甲基硅氧烷通道的详细信息。电极间收集效率和传输时间的校准验证了这些电池用于可溶性物质快速电化学检测的实用性。展示了在流速为200 μL/min时,两个电极间的传质时间低至3 ms。我们证明,根据电解质电导率,电极宽度与通道高度之比存在上限。给出了电极宽度与通道高度之比的最大推荐值。在0.1 M HSO中,建议电极宽度不超过通道高度的四倍。我们还展示了将空气中氧气影响降至最低的操作策略、步进电机注射泵参数的优化、电解质切换,并展示了如何在通道电极上沉积催化剂颗粒。•给出了具有多个电极的微流控流通池所有组件的制造方法•给出了改善操作的条件,包括几何形状、泵送和电气参数。