Katoh Takanobu A
Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
Biophys Physicobiol. 2024 Sep 6;21(3):e210018. doi: 10.2142/biophysico.bppb-v21.0018. eCollection 2024.
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow. Immotile cilia at the periphery of the node mechanically sense the direction of leftward nodal flow in a manner dependent on the polarized localization of Pkd2, which is localized on the dorsal side of cilia. Therefore, only left-side cilia are activated by leftward nodal flow. This activation results in frequent calcium transients in the cilia via the Pkd2 channel, which leads to the degradation of mRNA only at the left-side crown-cells. This process is the mechanism of initial determination of the left-side-specific signal. In this review, we provide an overview of initial left-right symmetry breaking that occurs at the node, focusing mainly on a recent biophysical study that revealed the function of nodal immotile cilia using advanced microscopic techniques, such as optical tweezers and super-resolution microscopy.
脊椎动物的内脏器官呈左右不对称排列;例如,心脏位于身体左侧。小鼠早期胚胎节点处的纤毛在决定这种左右不对称性方面起着至关重要的作用。利用来自前后轴的信息,节点中央区域的运动性纤毛产生向左的节点流。节点周边的不动纤毛以依赖于定位在纤毛背侧的Pkd2极化定位的方式机械感知向左节点流的方向。因此,只有左侧的纤毛被向左的节点流激活。这种激活通过Pkd2通道导致纤毛中频繁的钙瞬变,这仅导致左侧冠细胞处的mRNA降解。这个过程是左侧特异性信号初始确定的机制。在这篇综述中,我们概述了在节点处发生的初始左右对称性打破,主要关注最近一项生物物理研究,该研究使用先进的显微镜技术,如光镊和超分辨率显微镜,揭示了节点不动纤毛的功能。