Suppr超能文献

基于重症监护病房(ICU)入院时即时评估指标的重症中暑继发多器官功能障碍综合征风险预测模型的建立与验证

Development and validation of a risk prediction model for multiple organ dysfunction syndrome secondary to severe heat stroke based on immediate assessment indicators on ICU admission.

作者信息

Ren Entong, Chen Hao, Guo Chenjiao, Peng Yuanyuan, Tian Li, Yan Lulu, Tong Huasheng, Liu Anwei, Li Weihua

机构信息

Health Science Center, Yangtze University, Jingzhou, Hubei, China.

Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China.

出版信息

Front Med (Lausanne). 2024 Dec 24;11:1481097. doi: 10.3389/fmed.2024.1481097. eCollection 2024.

Abstract

INTRODUCTION

Early prediction of multiple organ dysfunction syndrome (MODS) secondary to severe heat stroke (SHS) is crucial for improving patient outcomes. This study aims to develop and validate a risk prediction model for those patients based on immediate assessment indicators on ICU admission.

METHODS

Two hundred eighty-four cases with SHS in our hospital between July 2009 and April 2024 were retrospectively reviewed, and categorized into non-MODS and MODS groups. Logistic regression analyses were performed to identify risk factors for MODS, and then to construct a risk prediction model, which was visualized by a nomogram. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), Hosmer-Lemeshow (HL) test, calibration curve, and decision curve analysis (DCA). Finally, the AUCs of the prediction model was compared with other scoring systems.

RESULTS

Acute gastrointestinal injury (AGI), heart rate (HR) >100 bpm, a decreased Glasgow Coma Scale (GCS) score, and elevated total bilirubin (TBil) within the first 24 h of ICU admission are identified as independent risk factors for the development of MODS in SHS patients. The model demonstrated good discriminative ability, and the AUC was 0.910 (95% : 0.856-0.965). Applying the predictive model to the internal validation dataset demonstrated good discrimination with an AUC of 0.933 (95% : 0.880-0.985) and good fit and calibration. The DCA of this model showed a superior clinical net benefit.

DISCUSSION

The risk prediction model based on AGI, HR, GCS, and TBil shows robust predictive performance and clinical utility, which could serve as a reference for assessing and screening the risk of MODS in SHS patients.

摘要

引言

早期预测重度中暑(SHS)继发的多器官功能障碍综合征(MODS)对于改善患者预后至关重要。本研究旨在基于入住重症监护病房(ICU)时的即时评估指标,为这些患者开发并验证一个风险预测模型。

方法

回顾性分析了2009年7月至2024年4月期间我院收治的284例SHS患者,并将其分为非MODS组和MODS组。进行逻辑回归分析以确定MODS的危险因素,然后构建风险预测模型,并通过列线图进行可视化。使用受试者操作特征曲线(AUC)下面积、Hosmer-Lemeshow(HL)检验、校准曲线和决策曲线分析(DCA)评估模型的预测性能。最后,将预测模型的AUC与其他评分系统进行比较。

结果

急性胃肠损伤(AGI)、心率(HR)>100次/分钟、格拉斯哥昏迷量表(GCS)评分降低以及入住ICU后24小时内总胆红素(TBil)升高被确定为SHS患者发生MODS的独立危险因素。该模型具有良好的辨别能力,AUC为0.910(95%:0.856 - 0.965)。将预测模型应用于内部验证数据集显示出良好的辨别能力,AUC为0.933(95%:0.880 - 0.985),且拟合度和校准良好。该模型的DCA显示出优越的临床净效益。

讨论

基于AGI、HR、GCS和TBil的风险预测模型显示出强大的预测性能和临床实用性,可为评估和筛查SHS患者发生MODS的风险提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7276/11719682/0e9d9e1464d1/fmed-11-1481097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验