Hartveit Espen, Veruki Margaret L
Department of Biomedicine, University of Bergen, Bergen, Norway.
Mohn Research Center for the Brain, Bergen, Norway.
Bio Protoc. 2025 Jan 5;15(1):e5147. doi: 10.21769/BioProtoc.5147.
During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance. While the standard technique for capacitance measurement assumes that the presynaptic cell is unbranched and can be represented as a simple resistance-capacitance (RC) circuit, neuronal exocytosis typically occurs at a distance from the soma. Even in such cases, however, it can be possible to detect a depolarization-evoked increase in capacitance. Here, we provide a detailed, step-by-step protocol that describes how "Sine + DC" (direct current) capacitance measurements can quantify the exocytotic release of neurotransmitters from AII amacrine cells in rat retinal slices. The AII is an important inhibitory interneuron of the mammalian retina that plays an important role in integrating rod and cone pathway signals. AII amacrines release glycine from their presynaptic dendrites, and capacitance measurements have been important for understanding the release properties of these dendrites. When the goal is to directly quantify the presynaptic release, there is currently no other competing method available. This protocol includes procedures for measuring depolarization-evoked exocytosis, using both standard square-wave pulses, arbitrary stimulus waveforms, and synaptic input. Key features • Quantification of exocytosis with the Sine + DC technique for visually targeted AII amacrines in retinal slices, using voltage-clamp and whole-cell patch-clamp recording. • Because exocytosis occurs away from the somatic recording electrode, the sine wave frequency must be lower than for the standard Sine + DC technique. • Because AII amacrines are electrically coupled, the sine wave frequency must be sufficiently high to avoid interference from other cells in the electrically coupled network. • The protocol includes procedures for measuring depolarization-evoked exocytosis using standard square-wave pulses, stimulation with arbitrary and prerecorded stimulus waveforms, and activation of synaptic inputs.
在神经元突触传递过程中,突触前神经元中突触小泡的神经递质胞吐释放会引起突触后神经元中一种或多种配体门控离子通道的电导变化。标准的研究方法是对突触后反应进行电生理记录。然而,电生理记录可以通过测量胞吐前后的膜电容,以高时间分辨率直接量化神经递质的突触前释放,因为突触前小泡膜与质膜融合会增加总电容。虽然电容测量的标准技术假设突触前细胞没有分支,可以表示为一个简单的电阻 - 电容(RC)电路,但神经元胞吐通常发生在远离胞体的部位。然而,即使在这种情况下,也有可能检测到去极化诱发的电容增加。在这里,我们提供了一个详细的、分步的方案,描述了 “正弦 + 直流”(直流)电容测量如何量化大鼠视网膜切片中 AII 无长突细胞的神经递质胞吐释放。AII 是哺乳动物视网膜中一种重要的抑制性中间神经元,在整合视杆和视锥通路信号中起重要作用。AII 无长突细胞从其突触前树突释放甘氨酸,电容测量对于理解这些树突的释放特性很重要。当目标是直接量化突触前释放时,目前没有其他竞争方法。该方案包括使用标准方波脉冲、任意刺激波形和突触输入来测量去极化诱发的胞吐的程序。关键特征 • 使用电压钳和全细胞膜片钳记录,通过 “正弦 + 直流” 技术对视网膜切片中视觉靶向的 AII 无长突细胞的胞吐进行量化。 • 由于胞吐发生在远离体细胞记录电极的位置,正弦波频率必须低于标准的 “正弦 + 直流” 技术。 • 由于 AII 无长突细胞是电耦合的,正弦波频率必须足够高,以避免来自电耦合网络中其他细胞的干扰。 • 该方案包括使用标准方波脉冲测量去极化诱发的胞吐的程序、用任意和预先记录的刺激波形进行刺激以及突触输入的激活。