Suppr超能文献

AII 无长突细胞中的电信号处理:缝隙连接耦合视网膜神经元的分室模型和被动膜特性。

Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron.

机构信息

Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.

出版信息

Brain Struct Funct. 2018 Sep;223(7):3383-3410. doi: 10.1007/s00429-018-1696-z. Epub 2018 Jun 14.

Abstract

Amacrine cells are critical for processing of visual signals, but little is known about their electrotonic structure and passive membrane properties. AII amacrine cells are multifunctional interneurons in the mammalian retina and essential for both rod- and cone-mediated vision. Their dendrites are the site of both input and output chemical synapses and gap junctions that form electrically coupled networks. This electrical coupling is a challenge for developing realistic computer models of single neurons. Here, we combined multiphoton microscopy and electrophysiological recording from dye-filled AII amacrine cells in rat retinal slices to develop morphologically accurate compartmental models. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses, obtained after blocking electrical coupling. The average best-fit parameters (obtained at - 60 mV and ~ 25 °C) were 0.91 µF cm for specific membrane capacitance, 198 Ω cm for cytoplasmic resistivity, and 30 kΩ cm for specific membrane resistance. We examined the passive signal transmission between the cell body and the dendrites by the electrotonic transform and quantified the frequency-dependent voltage attenuation in response to sinusoidal current stimuli. There was significant frequency-dependent attenuation, most pronounced for signals generated at the arboreal dendrites and propagating towards the soma and lobular dendrites. In addition, we explored the consequences of the electrotonic structure for interpreting currents in somatic, whole-cell voltage-clamp recordings. The results indicate that AII amacrines cannot be characterized as electrotonically compact and suggest that their morphology and passive properties can contribute significantly to signal integration and processing.

摘要

无长突细胞对于视觉信号的处理至关重要,但人们对其电紧张结构和被动膜特性知之甚少。在哺乳动物视网膜中,AII 无长突细胞是多功能中间神经元,对于视杆细胞和视锥细胞介导的视觉都很重要。它们的树突既是输入和输出化学突触的部位,也是形成电耦合网络的缝隙连接的部位。这种电耦合给开发单个神经元的逼真计算机模型带来了挑战。在这里,我们结合多光子显微镜和在大鼠视网膜切片中用染料填充的 AII 无长突细胞进行的电生理记录,开发出形态准确的分区模型。通过直接将模型的电流响应与生理记录的响应相拟合来估计被动电缆特性,生理记录的响应是在阻断电耦合后获得的。在 -60 mV 和~25°C 下获得的平均最佳拟合参数为:特定膜电容为 0.91 µF cm,细胞质电阻率为 198 Ω cm,特定膜电阻为 30 kΩ cm。我们通过电紧张变换检查了细胞体和树突之间的被动信号传输,并量化了对正弦电流刺激的频率相关电压衰减。存在显著的频率相关衰减,对于在树突上产生并向胞体和小叶树突传播的信号最为明显。此外,我们还探讨了电紧张结构对解释体部、全细胞膜片钳记录中电流的影响。结果表明,AII 无长突细胞不能被描述为电紧张紧凑的细胞,并且表明它们的形态和被动特性可以显著影响信号整合和处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验