Smith Rachel L, Sawiak Stephen J, Dorfschmidt Lena, Dutcher Ethan G, Jones Jolyon A, Hahn Joel D, Sporns Olaf, Swanson Larry W, Taylor Paul A, Glen Daniel R, Dalley Jeffrey W, McMahon Francis J, Raznahan Armin, Vértes Petra E, Bullmore Edward T
Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK.
Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA 20892.
bioRxiv. 2024 Dec 21:2024.12.20.629759. doi: 10.1101/2024.12.20.629759.
The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40). MIND as a metric of cortical similarity and connectivity was validated by cortical cytoarchitectonics and axonal tract-tracing data. The normative rat MIND network had high between-study reliability and complex topological properties including a rich club. Similarity changed during post-natal and adolescent development, including a phase of fronto-hippocampal convergence, or increasing inter-areal similarity. An inverse process of increasing fronto-hippocampal dissimilarity was seen with post-adult aging. Exposure to ELS in the form of maternal separation appeared to accelerate the normative trajectory of brain development - highlighting embedding of stress in the dynamic rat brain network. Our work provides novel tools for systems-level study of the rat brain that can now be used to understand network-based underpinnings of complex lifespan behaviors and experimental manipulations that this model organism allows.
大鼠在神经科学中提供了一种独特且有价值的动物模型,但我们目前缺乏对活体大鼠脑网络的个体层面的理解。在此,利用出生后第20天(断奶期)至第290天(成年中期)期间活体神经成像的皮质磁化传递率(MTR)的纵向测量数据,我们设计并实施了一个计算流程,该流程捕捉了53个不同皮质区域中每个区域之间的结构相似性网络(MIND,形态计量逆散度)。我们首先在一组经历典型发育的大鼠(N = 47)中对该网络的正常发育进行了表征,然后将这些发现与一组遭受早期生活应激(ELS,N = 40)的大鼠进行了对比。通过皮质细胞构筑学和轴突束追踪数据验证了MIND作为皮质相似性和连通性的指标。正常大鼠的MIND网络具有高研究间可靠性和复杂的拓扑特性,包括一个富俱乐部。相似性在出生后和青少年发育过程中发生变化,包括额-海马汇聚阶段,即区域间相似性增加。成年后衰老则出现额-海马差异增加的相反过程。以母体分离形式暴露于ELS似乎加速了大脑发育的正常轨迹——突出了应激在动态大鼠脑网络中的嵌入。我们的工作为大鼠脑的系统水平研究提供了新工具,现在可用于理解基于网络的复杂寿命行为的基础以及这种模式生物所允许的实验操作。