Kang Sun Woo Sophie, Brown Lauryn A, Miller Colin B, Barrows Katherine M, Golino Jihye L, Cultraro Constance M, Feliciano Daniel, Cornelius-Muwanuzi Mercedes B, Tran Andy D, Kruhlak Michael, Lobanov Alexei, Cam Maggie, Porat-Shliom Natalie
Cell Biology and Imaging Sections, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
bioRxiv. 2024 Dec 12:2024.12.10.627730. doi: 10.1101/2024.12.10.627730.
Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver. However, how hepatocytes adapt to increased lipid flux during nutrient deprivation and what occurs differently in MASLD is not known. To investigate the differences in lipid handling in response to nutrient deficiency and excess, we developed a novel single-cell tissue imaging (scPhenomics) technique coupled with spatial proteomics. Our investigation revealed extensive remodeling of lipid droplet (LD) and mitochondrial topology in response to dietary conditions. Notably, fasted mice exhibited extensive mitochondria-LD interactions, which were rarely observed in Western Diet (WD)-fed mice. Spatial proteomics showed an increase in PLIN5 expression, a known mediator of LD-mitochondria interaction, in response to fasting. To examine the functional role of mitochondria-LD interaction on lipid handling, we overexpressed PLIN5 variants. We found that the phosphorylation state of PLIN5 impacts its capacity to form mitochondria-LD contact sites. PLIN5 S155A promoted extensive organelle interactions, triglyceride (TG) synthesis, and LD expansion in mice fed a control diet. Conversely, PLIN5 S155E expressing cells had fewer LDs and contact sites and contained less TG. Wild-type (WT) PLIN5 overexpression in WD-fed mice reduced steatosis and improved redox state despite continued WD consumption. These findings highlight the importance of organelle interactions in lipid metabolism, revealing a critical mechanism by which hepatocytes maintain homeostasis during metabolic stress. Our study underscores the potential utility of targeting mitochondria-LD interactions for therapeutic intervention.
肝脏脂质蓄积,即代谢功能障碍相关脂肪性肝病(MASLD),是肝癌的一个重要危险因素。尽管MASLD的发病率不断上升,但其脂肪变性和脂毒性的潜在机制仍知之甚少。有趣的是,在禁食期间也会发生脂质蓄积,这是由脂肪组织衍生的脂肪酸动员进入肝脏所驱动的。然而,肝细胞如何在营养剥夺期间适应增加的脂质通量以及在MASLD中发生了哪些不同情况尚不清楚。为了研究对营养缺乏和营养过剩的脂质处理差异,我们开发了一种结合空间蛋白质组学的新型单细胞组织成像(scPhenomics)技术。我们的研究揭示了脂质滴(LD)和线粒体拓扑结构在饮食条件下的广泛重塑。值得注意的是,禁食小鼠表现出广泛的线粒体-LD相互作用,而在喂食西方饮食(WD)的小鼠中很少观察到这种相互作用。空间蛋白质组学显示,响应禁食,已知的LD-线粒体相互作用介质PLIN5的表达增加。为了研究线粒体-LD相互作用对脂质处理的功能作用,我们过表达了PLIN5变体。我们发现PLIN5的磷酸化状态影响其形成线粒体-LD接触位点的能力。PLIN5 S155A促进了喂食对照饮食小鼠中的广泛细胞器相互作用、甘油三酯(TG)合成和LD扩张。相反,表达PLIN5 S155E的细胞具有较少的LD和接触位点,并且含有较少的TG。在喂食WD的小鼠中过表达野生型(WT)PLIN5尽管继续食用WD,但减少了脂肪变性并改善了氧化还原状态。这些发现突出了细胞器相互作用在脂质代谢中的重要性,揭示了肝细胞在代谢应激期间维持体内平衡的关键机制。我们的研究强调了靶向线粒体-LD相互作用进行治疗干预的潜在效用。