Suppr超能文献

Elucidating the mechanism behind the significant changes in photoluminescence behavior after powder compression into a tablet.

作者信息

Lei Xiaoping, Wu Qingfeng, Zhang Xiangxi, Zhou Qing, Yi Lingmin

机构信息

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.

Zhejiang Sci-Tech University Shaoxing-Keqiao Research Institute, Cross border E-commerce Park, Huashe Street, Keqiao District, Shaoxing City, Zhejiang 312030, China.

出版信息

Phys Chem Chem Phys. 2025 Jan 29;27(5):2510-2515. doi: 10.1039/d4cp03897e.

Abstract

Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet. Here, D-(+)-cellobiose has been chosen as the representative to study the problem. The results showed that the PLQY and p-RTP lifetimes of the tablet of D-(+)-cellobiose were improved compared to those of the powder. Using the mechanism of clustering-triggered emission (CTE) and theoretical calculations, it has been demonstrated that the enhanced molecular interactions after compression are the key reason, which result in the formation of cluster emission centers with stronger emission capabilities. And the combination of the powder and tablet has been proven to have application potential for advanced anti-counterfeiting encryption. The above results not only provide possible references for understanding the emission mechanism of small molecules and cellulose based emission materials, but also promote the process of more intuitive observation of emission centers for explaining emission mechanisms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验