Suppr超能文献

临床放射治疗中人工智能自动分割系统的选择与评估指南:来自六家供应商分析的见解

Guidance on selecting and evaluating AI auto-segmentation systems in clinical radiotherapy: insights from a six-vendor analysis.

作者信息

Rusanov Branimir, Ebert Martin A, Sabet Mahsheed, Rowshanfarzad Pejman, Barry Nathaniel, Kendrick Jake, Alkhatib Zaid, Gill Suki, Dass Joshua, Bucknell Nicholas, Croker Jeremy, Tang Colin, White Rohen, Bydder Sean, Taylor Mandy, Slama Luke, Mukwada Godfrey

机构信息

School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia.

Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.

出版信息

Phys Eng Sci Med. 2025 Mar;48(1):301-316. doi: 10.1007/s13246-024-01513-x. Epub 2025 Jan 13.

Abstract

Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating the most suitable solution. To support the clinical adoption of AI auto-segmentation systems, Selection Criteria recommendations were developed to enable a holistic evaluation of vendors, considering not only raw performance but associated risks uniquely related to the clinical deployment of AI. In-house experience and key bodies of work on ethics, standards, and best practices for AI in Radiation Oncology were reviewed to inform selection criteria and evaluation strategies. A retrospective analysis using the criteria was performed across six vendors, including a quantitative assessment using five metrics (Dice, Hausdorff Distance, Average Surface Distance, Surface Dice, Added Path Length) across 20 head and neck, 20 thoracic, and 19 male pelvis patients for AI models as of March 2023. A total of 47 selection criteria were identified across seven categories. A retrospective analysis showed that overall no vendor performed exceedingly well, with systematically poor performance in Data Security & Responsibility, Vendor Support Tools, and Transparency & Ethics. In terms of raw performance, vendors varied widely from excellent to poor. As new regulations come into force and the scope of AI auto-segmentation systems adapt to clinical needs, continued interest in ensuring safe, fair, and transparent AI will persist. The selection and evaluation framework provided herein aims to promote user confidence by exploring the breadth of clinically relevant factors to support informed decision-making.

摘要

基于人工智能(AI)的自动分割已在临床放射治疗工作流程中展现出诸多益处。然而,快速变化的监管、研究和市场环境给选择和评估最合适的解决方案带来了挑战。为支持临床采用AI自动分割系统,制定了选择标准建议,以便对供应商进行全面评估,不仅考虑原始性能,还考虑与AI临床部署独特相关的风险。回顾了内部经验以及放射肿瘤学中AI伦理、标准和最佳实践的关键工作成果,以为选择标准和评估策略提供参考。使用这些标准对六家供应商进行了回顾性分析,包括截至2023年3月对20例头颈部、20例胸部和19例男性盆腔患者的AI模型,采用五个指标(骰子系数、豪斯多夫距离、平均表面距离、表面骰子系数、增加路径长度)进行定量评估。共确定了七个类别的47条选择标准。回顾性分析表明,总体而言没有一家供应商表现极为出色,在数据安全与责任、供应商支持工具以及透明度与伦理方面存在系统性的不佳表现。在原始性能方面,供应商的表现差异很大,从优秀到较差不等。随着新法规的生效以及AI自动分割系统的范围适应临床需求,对确保安全、公平和透明的AI的持续关注将持续存在。本文提供的选择和评估框架旨在通过探索临床相关因素的广度来促进用户信心,以支持明智的决策。

相似文献

9
[Not Available].[无可用内容]
Med Phys. 2024 Mar;51(3):2187-2199. doi: 10.1002/mp.16965. Epub 2024 Feb 6.

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验