Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia.
Radiotherapy AI, Sydney, NSW, Australia.
Phys Eng Sci Med. 2024 Sep;47(3):1123-1140. doi: 10.1007/s13246-024-01434-9. Epub 2024 Sep 2.
Manual contouring of organs at risk (OAR) is time-consuming and subject to inter-observer variability. AI-based auto-contouring is proposed as a solution to these problems if it can produce clinically acceptable results. This study investigated the performance of multiple AI-based auto-contouring systems in different OAR segmentations. The auto-contouring was performed using seven different AI-based segmentation systems (Radiotherapy AI, Limbus AI version 1.5 and 1.6, Therapanacea, MIM, Siemens AI-Rad Companion and RadFormation) on a total of 42 clinical cases with varying anatomical sites. Volumetric and surface dice similarity coefficients and maximum Hausdorff distance (HD) between the expert's contours and automated contours were calculated to evaluate their performance. Radiotherapy AI has shown better performance than other software in most tested structures considered in the head and neck, and brain cases. No specific software had shown overall superior performance over other software in lung, breast, pelvis and abdomen cases. Each tested AI system was able to produce comparable contours to the experts' contours of organs at risk which can potentially be used for clinical use. A reduced performance of AI systems in the case of small and complex anatomical structures was found and reported, showing that it is still essential to review each contour produced by AI systems for clinical uses. This study has also demonstrated a method of comparing contouring software options which could be replicated in clinics or used for ongoing quality assurance of purchased systems.
手动勾画危及器官 (OAR) 既费时又容易受到观察者间差异的影响。如果人工智能 (AI) 自动勾画能够产生临床可接受的结果,则可提出 AI 自动勾画来解决这些问题。本研究探讨了多个基于 AI 的自动勾画系统在不同 OAR 分割中的性能。对 42 例不同解剖部位的临床病例分别使用 7 种不同的基于 AI 的分割系统(Radiotherapy AI、Limbus AI version 1.5 和 1.6、Therapanacea、MIM、Siemens AI-Rad Companion 和 RadFormation)进行自动勾画。通过计算体积和表面骰子相似系数以及专家轮廓和自动轮廓之间的最大 Hausdorff 距离 (HD),评估其性能。在头颈部和脑部病例中,Radiotherapy AI 在大多数测试结构中的表现优于其他软件。在肺部、乳腺、骨盆和腹部病例中,没有特定的软件在所有测试中均表现出优于其他软件的总体性能。每个测试的 AI 系统都能够生成与专家勾画的危及器官轮廓相似的轮廓,这可能可用于临床应用。研究还发现并报告了 AI 系统在小而复杂的解剖结构情况下性能降低的情况,这表明在临床应用中仍有必要对 AI 系统生成的每个轮廓进行审查。本研究还展示了一种比较勾画软件选项的方法,可在临床中复制或用于购买系统的持续质量保证。
Radiat Oncol. 2024-5-31
Int J Environ Res Public Health. 2022-7-25
Radiother Oncol. 2019-10-22
Front Med (Lausanne). 2025-6-6
J Appl Clin Med Phys. 2025-6
Diagnostics (Basel). 2023-2-10
J Appl Clin Med Phys. 2022-8
Phys Imaging Radiat Oncol. 2019-12-17