文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多个人工智能自动勾画系统在危险器官(OARs)勾画中的性能研究。

Investigation on performance of multiple AI-based auto-contouring systems in organs at risks (OARs) delineation.

机构信息

Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia.

Radiotherapy AI, Sydney, NSW, Australia.

出版信息

Phys Eng Sci Med. 2024 Sep;47(3):1123-1140. doi: 10.1007/s13246-024-01434-9. Epub 2024 Sep 2.


DOI:10.1007/s13246-024-01434-9
PMID:39222214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11408550/
Abstract

Manual contouring of organs at risk (OAR) is time-consuming and subject to inter-observer variability. AI-based auto-contouring is proposed as a solution to these problems if it can produce clinically acceptable results. This study investigated the performance of multiple AI-based auto-contouring systems in different OAR segmentations. The auto-contouring was performed using seven different AI-based segmentation systems (Radiotherapy AI, Limbus AI version 1.5 and 1.6, Therapanacea, MIM, Siemens AI-Rad Companion and RadFormation) on a total of 42 clinical cases with varying anatomical sites. Volumetric and surface dice similarity coefficients and maximum Hausdorff distance (HD) between the expert's contours and automated contours were calculated to evaluate their performance. Radiotherapy AI has shown better performance than other software in most tested structures considered in the head and neck, and brain cases. No specific software had shown overall superior performance over other software in lung, breast, pelvis and abdomen cases. Each tested AI system was able to produce comparable contours to the experts' contours of organs at risk which can potentially be used for clinical use. A reduced performance of AI systems in the case of small and complex anatomical structures was found and reported, showing that it is still essential to review each contour produced by AI systems for clinical uses. This study has also demonstrated a method of comparing contouring software options which could be replicated in clinics or used for ongoing quality assurance of purchased systems.

摘要

手动勾画危及器官 (OAR) 既费时又容易受到观察者间差异的影响。如果人工智能 (AI) 自动勾画能够产生临床可接受的结果,则可提出 AI 自动勾画来解决这些问题。本研究探讨了多个基于 AI 的自动勾画系统在不同 OAR 分割中的性能。对 42 例不同解剖部位的临床病例分别使用 7 种不同的基于 AI 的分割系统(Radiotherapy AI、Limbus AI version 1.5 和 1.6、Therapanacea、MIM、Siemens AI-Rad Companion 和 RadFormation)进行自动勾画。通过计算体积和表面骰子相似系数以及专家轮廓和自动轮廓之间的最大 Hausdorff 距离 (HD),评估其性能。在头颈部和脑部病例中,Radiotherapy AI 在大多数测试结构中的表现优于其他软件。在肺部、乳腺、骨盆和腹部病例中,没有特定的软件在所有测试中均表现出优于其他软件的总体性能。每个测试的 AI 系统都能够生成与专家勾画的危及器官轮廓相似的轮廓,这可能可用于临床应用。研究还发现并报告了 AI 系统在小而复杂的解剖结构情况下性能降低的情况,这表明在临床应用中仍有必要对 AI 系统生成的每个轮廓进行审查。本研究还展示了一种比较勾画软件选项的方法,可在临床中复制或用于购买系统的持续质量保证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e784/11408550/d03d5e6d8eb7/13246_2024_1434_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e784/11408550/1d7b0fe49376/13246_2024_1434_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e784/11408550/d03d5e6d8eb7/13246_2024_1434_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e784/11408550/1d7b0fe49376/13246_2024_1434_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e784/11408550/d03d5e6d8eb7/13246_2024_1434_Fig2_HTML.jpg

相似文献

[1]
Investigation on performance of multiple AI-based auto-contouring systems in organs at risks (OARs) delineation.

Phys Eng Sci Med. 2024-9

[2]
A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.

Front Oncol. 2023-8-4

[3]
Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.

Med Phys. 2022-4

[4]
Evaluation of multiple-vendor AI autocontouring solutions.

Radiat Oncol. 2024-5-31

[5]
Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers.

J Cancer Res Ther. 2024-4-1

[6]
Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients.

J Appl Clin Med Phys. 2024-6

[7]
Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.

Int J Environ Res Public Health. 2022-7-25

[8]
Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.

Radiother Oncol. 2019-10-22

[9]
Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.

Radiat Oncol. 2019-11-27

[10]
A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer.

Sci Rep. 2021-11-26

引用本文的文献

[1]
Artificial intelligence-assisted radiation imaging pathways for distinguishing uterine fibroids and malignant lesions in patients presenting with cancer pain: a literature review.

Front Oncol. 2025-6-24

[2]
Can Deep Learning-Based Auto-Contouring Software Achieve Accurate Pelvic Volume Delineation in Volumetric Image-Guided Radiotherapy for Prostate Cancer? A Preliminary Multicentric Analysis.

Curr Oncol. 2025-5-30

[3]
The use of artificial intelligence in stereotactic ablative body radiotherapy for hepatocellular carcinoma.

Front Med (Lausanne). 2025-6-6

[4]
Using deep learning generated CBCT contours for online dose assessment of prostate SABR treatments.

J Appl Clin Med Phys. 2025-6

[5]
Automated Organ Segmentation for Radiation Therapy: A Comparative Analysis of AI-Based Tools Versus Manual Contouring in Korean Cancer Patients.

Cancers (Basel). 2024-10-30

本文引用的文献

[1]
Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis.

Biomed Eng Online. 2023-11-1

[2]
A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.

Front Oncol. 2023-8-4

[3]
Automated Contouring and Planning in Radiation Therapy: What Is 'Clinically Acceptable'?

Diagnostics (Basel). 2023-2-10

[4]
Implementation of a Commercial Deep Learning-Based Auto Segmentation Software in Radiotherapy: Evaluation of Effectiveness and Impact on Workflow.

Life (Basel). 2022-12-13

[5]
Automatic contouring QA method using a deep learning-based autocontouring system.

J Appl Clin Med Phys. 2022-8

[6]
Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models.

Radiat Oncol. 2021-9-9

[7]
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study.

J Med Internet Res. 2021-7-12

[8]
Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy.

Phys Imaging Radiat Oncol. 2019-12-17

[9]
Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.

Radiother Oncol. 2020-12

[10]
Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.

Radiat Oncol. 2020-7-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索