Scheid Anna, Yogi Arvind Kumar, Isobe Masahiko, Bußmann Birgit, Heil Tobias, van Aken Peter A
Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstraße 1, Stuttgart 70569, Germany.
UGC DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India.
Microsc Microanal. 2025 Feb 17;31(1). doi: 10.1093/mam/ozae129.
In the field of quantum materials, understanding anomalous behavior under charge degrees of freedom through bond formation is of fundamental importance, with two key concepts: Dimerization and charge order at different cation sites. The coexistence of both dimerization and charge ordering is unusually found in NaRu2O4, even in its metallic state at room temperature. Our work unveils the origin of the interplay of these effects within metallic single-crystalline NaRu2O4. Employing advanced transmission electron microscopy techniques, we probe the lattice order of NaRu2O4 as a function of temperature and provide direct microscopic evidence of a Peierls-type transition. This transition is accompanied by a pronounced dimerization of the ruthenium chains, resulting in a distinctive twofold superstructure along the b axis below the critical transition temperature of ∼535 K, coinciding with a charge order. In situ heating experiments confirm the reversibility of this first-order phase transition, and periodic lattice displacement maps depict atomic-scale displacements linked to dimerization.
在量子材料领域,通过键的形成来理解电荷自由度下的异常行为至关重要,其中有两个关键概念:二聚化和不同阳离子位点的电荷序。二聚化和电荷序的共存现象在NaRu2O4中非同寻常地被发现,即便在室温下其金属态时也是如此。我们的工作揭示了金属单晶NaRu2O4中这些效应相互作用的起源。利用先进的透射电子显微镜技术,我们探究了NaRu2O4的晶格序随温度的变化,并提供了佩尔斯型转变的直接微观证据。这种转变伴随着钌链明显的二聚化,在低于约535 K的临界转变温度时,沿b轴形成独特的双重超结构,这与电荷序一致。原位加热实验证实了这种一级相变的可逆性,并且周期性晶格位移图描绘了与二聚化相关的原子尺度位移。