文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

作者信息

Zhang Jingtian, Jiao Di, Qi Xinwen, Zhang Yufan, Liu Xiaoang, Pan Tengwu, Gao Heqi, Liu Zhaoyun, Ding Dan, Feng Guangxue

机构信息

Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.

Department of Hematology, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin, 300052, China.

出版信息

Adv Sci (Weinh). 2025 Mar;12(9):e2410405. doi: 10.1002/advs.202410405. Epub 2025 Jan 13.


DOI:10.1002/advs.202410405
PMID:39804949
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11884554/
Abstract

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis. These multifaceted cell deaths synergistically facilitate the release of damage-associated molecular patterns and antitumor cytokines, thereby provoking robust antitumor immunity. Both in vitro and in vivo experiments confirmed that BSA@TPE-BT-SCT NPs elicited the immunogenic cell death, enhance dendritic cell maturation, activate T cell, and reduce myeloid-derived suppressor cells, leading to the inhibition of both primary and distant tumors. Additionally, BSA@TPE-BT-SCP NPs also exhibited excellent antitumor performance in a humanized mice model, evidenced by a reduction in senescent T cells among these activated T cells. The findings advance the development of robust type I photosensitizers and unveil the important role of type I ROS in enhancing multifaceted tumor cell deaths and antitumor immunogenicity.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/6739eb5b739f/ADVS-12-2410405-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/f1f48a9023b7/ADVS-12-2410405-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/a45a7014a17a/ADVS-12-2410405-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/116e46ab3d76/ADVS-12-2410405-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/333090f7e039/ADVS-12-2410405-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/38aa8f58f866/ADVS-12-2410405-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/04682f36f3e9/ADVS-12-2410405-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/4e1cf41b0e78/ADVS-12-2410405-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/6739eb5b739f/ADVS-12-2410405-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/f1f48a9023b7/ADVS-12-2410405-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/a45a7014a17a/ADVS-12-2410405-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/116e46ab3d76/ADVS-12-2410405-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/333090f7e039/ADVS-12-2410405-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/38aa8f58f866/ADVS-12-2410405-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/04682f36f3e9/ADVS-12-2410405-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/4e1cf41b0e78/ADVS-12-2410405-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38c7/11884554/6739eb5b739f/ADVS-12-2410405-g001.jpg

相似文献

[1]
An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh). 2025-3

[2]
BSA-AIE Nanoparticles with Boosted ROS Generation for Immunogenic Cell Death Immunotherapy of Multiple Myeloma.

Adv Mater. 2023-2

[3]
Cell Membrane-Targeting Type I/II Photodynamic Therapy Combination with FSP1 Inhibition for Ferroptosis-Enhanced Photodynamic Immunotherapy.

Adv Healthc Mater. 2024-6

[4]
Lab-in-Cell: A Covalent Photosensitizer Reverses Hypoxia and Evokes Ferroptosis and Pyroptosis for Enhanced Anti-Tumor Immunity.

Adv Mater. 2025-4

[5]
Potent Covalent Organic Framework Nanophotosensitizers with Staggered Type I/II Motifs for Photodynamic Immunotherapy of Hypoxic Tumors.

ACS Nano. 2024-12-31

[6]
Combining photodynamic therapy and ATM inhibition using modified bovine serum albumin: A co-delivery nano platform for eliciting pyroptosis and apoptosis to fuel TNBC therapy.

Int J Biol Macromol. 2025-5

[7]
Co-delivery of Bee Venom Melittin and a Photosensitizer with an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy.

ACS Nano. 2019-10-22

[8]
ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer.

Acta Biomater. 2023-7-1

[9]
Precise Regulation of Reactive Oxygen Species in Tumor Microenvironment for Alleviating Inhibitory Immunogenic Cell Death.

Adv Healthc Mater. 2024-12

[10]
A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy.

ACS Nano. 2023-9-12

引用本文的文献

[1]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

本文引用的文献

[1]
Engineering photodynamics for treatment, priming and imaging.

Nat Rev Bioeng. 2024-9

[2]
Photochemical Strategies toward Precision Targeting against Multidrug-Resistant Bacterial Infections.

ACS Nano. 2024-6-4

[3]
Light-Triggered Nanozymes Remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for Ferroptosis-Enhanced Antitumor Immunity.

ACS Nano. 2024-5-14

[4]
Bioactive Layered Double Hydroxides for Synergistic Sonodynamic/Cuproptosis Anticancer Therapy with Elicitation of the Immune Response.

ACS Nano. 2024-4-16

[5]
Deciphering Oxygen-Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron-Hole Pairs.

Angew Chem Int Ed Engl. 2024-4-8

[6]
PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury.

Nat Chem Biol. 2024-7

[7]
Polydopamine Nanostructure-Enhanced Water Interaction with pH-Responsive Manganese Sulfide Nanoclusters for Tumor Magnetic Resonance Contrast Enhancement and Synergistic Ferroptosis-Photothermal Therapy.

ACS Nano. 2024-1-30

[8]
Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy.

ACS Nano. 2024-1-23

[9]
Endoplasmic Reticulum-Targeting AIE Photosensitizers to Boost Immunogenic Cell Death for Immunotherapy of Bladder Carcinoma.

ACS Appl Mater Interfaces. 2024-1-10

[10]
A CTL-Inspired Killing System Using Ultralow-Dose Chemical-Drugs to Induce a Pyroptosis-Mediated Antitumor Immune Function.

Adv Mater. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索