Lin Ye, Yang Xin, Zhang Mingxuan, Cheng Jinyan, Lin Hai, Zhao Qi
College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
Aquat Toxicol. 2025 Feb;279:107244. doi: 10.1016/j.aquatox.2025.107244. Epub 2025 Jan 7.
As compound concentrations in aquatic environments increase, the habitat degradation of aquatic organisms underscores the growing importance of studying the impact of chemicals on diverse aquatic populations. Understanding the potential impacts of different chemical substances on different species is a necessary requirement for protecting the environment and ensuring sustainable human development. In this regard, deep learning methods offer significant advantages over traditional experimental approaches in terms of cost, accuracy, and generalization ability. This research introduces CLSSATP, an efficient contrastive self-supervised learning deep neural network prediction model for organic toxicity. The model integrates two modules, a self-supervised learning module using molecular fingerprints for representation, and a contrastive learning module utilizing molecular graphs. Through dual-perspective learning, the model gains clear insights into the structural and property relationships of molecules. The experiment results indicate that our model outperforms comparative methods, demonstrating the effectiveness of our proposed architecture. Moreover, ablation experiments show that the self-supervised module and contrastive learning module respectively provide average performance improvements of 9.43 % and 10.98 % to CLSSATP. Furthermore, by visualizing the representations of our model, we observe that it correctly identifies the substructures that determine the molecular properties, granting itself with interpretability. In conclusion, CLSSATP offers a novel and effective perspective for future research in aquatic toxicity assessment. All of codes and datasets are freely available online at https://github.com/zhaoqi106/CLSSATP.
随着水生环境中化合物浓度的增加,水生生物的栖息地退化凸显了研究化学物质对不同水生生物种群影响的重要性日益增加。了解不同化学物质对不同物种的潜在影响是保护环境和确保人类可持续发展的必要条件。在这方面,深度学习方法在成本、准确性和泛化能力方面比传统实验方法具有显著优势。本研究介绍了CLSSATP,一种用于有机毒性的高效对比自监督学习深度神经网络预测模型。该模型集成了两个模块,一个使用分子指纹进行表示的自监督学习模块,以及一个利用分子图的对比学习模块。通过双视角学习,该模型对分子的结构和性质关系有了清晰的认识。实验结果表明,我们的模型优于比较方法,证明了我们提出的架构的有效性。此外,消融实验表明,自监督模块和对比学习模块分别为CLSSATP提供了9.43%和10.98%的平均性能提升。此外,通过可视化我们模型的表示,我们观察到它正确地识别了决定分子性质的子结构,赋予了自身可解释性。总之,CLSSATP为未来水生毒性评估研究提供了一个新颖而有效的视角。所有代码和数据集均可在https://github.com/zhaoqi106/CLSSATP上免费在线获取。