Suppr超能文献

Role of AIM2 and cGAS-STING signaling in high fat high carbohydrate diet-induced gut dysbiosis associated neurodegeneration.

作者信息

Mallick Keya, Islam Sk Ramiz, Krishna Vamsi, Manna Soumen Kanti, Banerjee Sugato

机构信息

Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India.

Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700 064, India.

出版信息

Life Sci. 2025 Feb 15;363:123392. doi: 10.1016/j.lfs.2025.123392. Epub 2025 Jan 11.

Abstract

AIMS

Gut dysbiosis modulates CNS complications and cognitive decline through the gut-brain axis. The study aims to investigate the molecular mechanisms involved in gut dysbiosis-associated cognitive changes and the potential effects of probiotics in high fat-high carbohydrate diet-induced gut dysbiosis-associated neurodegeneration.

MATERIALS AND METHODS

We used high fat, high-carbohydrate diet (HFHCD) and high-fat diet (HFD) to induce gut dysbiosis-associated neurodegeneration in C57BL/6 mice. IVIS imaging system and biochemical changes using ELISA measured intestinal inflammation. We used fecal samples for qPCR profiling of intestinal bacteria, and serum was used for inflammatory marker analysis using ELISA. Behavioral studies measured cognitive changes, while histopathology, immunohistochemistry, and western blot analysis of hippocampal samples measured protein changes.

KEY FINDINGS

The behavioral studies showed a significant decrease in cognitive function associated with gut dysbiosis in HFHCD and HFD animals. Gut dysbiosis was associated with intestinal inflammation and increased intestinal permeability, followed by systemic and neuroinflammatory changes. Molecular signaling studies showed the involvement of AIM2 inflammasome and cGAS-STING signaling pathways in neurodegeneration for HFHCD animals. Administration of probiotics restored the above processes and prevented gut dysbiosis-associated memory decline in mice.

SIGNIFICANCE

The study shows that alteration in microbial composition due to prolonged HFHCD could contribute to intestinal inflammation and increased intestinal permeability, facilitating the translocation of microbial toxins like LPS, leading to systemic inflammation, which eventually leads to neuroinflammation and neurodegeneration.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验