Yan Li-Ke, Cui Can, Wang Ying, Zhu Shui-Lan, Xu Zhong-Hua, Xiao Han-Yue, Liu Wei-Hua, Tu Jun
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China Key Laboratory of Traditional Chinese Medicine Pharmacology of Jiangxi Province Nanchang 330004, China.
Zhongguo Zhong Yao Za Zhi. 2024 Dec;49(23):6368-6377. doi: 10.19540/j.cnki.cjcmm.20240625.403.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively. Periodic acid-Schiff(PAS) staining and lipid fluorescence method were used to detect glycogen and lipids. The immunofluorescence(IF) assay was employed to detect the nuclear localization of BMAL1 and circadian locomotor output cycles kaput(CLOCK) in IR-HepG2 cells. Western blot was employed to determine the protein levels of BMAL1, CLOCK, period circadian clock 2(PER2), cryptochrome circadian regulator 1(CRY1), Rev-Erbα, carbohydrate response element-binding protein(ChREBP), peroxisome proliferator-activated receptors alpha and gamma(PPARα/γ), sterol regulatory element-binding protein 1C(SREBP-1C), mammalian target of rapamycin(mTOR), protein kinase B(Akt), glycogen synthase kinase-3β(GSK3β), acetyl coenzyme A carboxylase 1(ACC1), fatty acid synthase(FASN), carnitine palmitoyltransferase 1α(CPT1α), nicotinamide phosphoribosyltransferase(NAMPT), silent information regulator 1(SIRT1), adiponectin(ADPN), insulin receptor substrate 2(IRS2), and phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85). In addition, the levels of phosphorylated adenosine monophosphate-activated protein kinase alpha(AMPKα), Akt, GSK3β, BMAL1, and mTOR were determined. Furthermore, 20 μmol·L(-1) CLK8 was added to measure the glucose consumption as well as the protein levels of ChREBP, PPARα, and mTOR in IR-HepG2 cells. The results showed that berberine increased the glucose consumption, lowered the lipid levels, increased the expression and nuclear localization of BMAL1 and CLOCK, and up-regulated the level of BMAL1 in IR-HepG2 cells. Furthermore, berberine up-regulated the levels of ADPN, IRS2, PI3Kp85, p-Akt(Ser473)/Akt, p-mTOR(Ser2448)/mTOR, PPARα, and CPT1α, and down-regulated the levels of p-GSK3β(Ser9)/GSK3β, ChREBP, SREBP-1C, ACC1, and FASN. The addition of CLK8 reduced glucose consumption in IR-HepG2 cells, up-regulated the ChREBP level, and down-regulated PPARα and mTOR levels by inhibiting the BMAL1 and CLOCK interaction. In summary, berberine regulated glucose and lipid metabolism via clock-controlled genes with BMAL1 at the core to ameliorate IR of hepatocytes.
本研究旨在探讨黄连素通过以脑和肌肉芳香烃受体核转运蛋白样蛋白1(BMAL1)为代表的生物钟调控基因调节代谢网络,以改善体外培养的肝细胞胰岛素抵抗(IR)的机制。建立地塞米松诱导的IR(IR-HepG2)HepG2细胞模型,分别用5、10和20 μmol·L⁻¹黄连素处理24 h。采用葡萄糖氧化酶法和细胞计数试剂盒-8(CCK-8)法分别检测细胞外葡萄糖浓度和细胞活力。采用过碘酸希夫(PAS)染色和脂质荧光法检测糖原和脂质。采用免疫荧光(IF)法检测IR-HepG2细胞中BMAL1和昼夜运动输出周期蛋白(CLOCK)的核定位。采用蛋白质免疫印迹法检测BMAL1、CLOCK、周期生物钟蛋白2(PER2)、隐花色素生物钟调节蛋白1(CRY1)、视黄酸受体相关孤儿受体α(Rev-Erbα)、碳水化合物反应元件结合蛋白(ChREBP)、过氧化物酶体增殖物激活受体α和γ(PPARα/γ)、固醇调节元件结合蛋白1C(SREBP-1C)、雷帕霉素靶蛋白(mTOR)、蛋白激酶B(Akt)、糖原合酶激酶-3β(GSK3β)、乙酰辅酶A羧化酶1(ACC1)、脂肪酸合酶(FASN)、肉碱棕榈酰转移酶1α(CPT1α)、烟酰胺磷酸核糖转移酶(NAMPT)、沉默信息调节因子1(SIRT1)、脂联素(ADPN)、胰岛素受体底物2(IRS2)和磷脂酰肌醇3-激酶调节亚基p85(PI3Kp85)的蛋白水平。此外,还检测了磷酸化的腺苷酸活化蛋白激酶α(AMPKα)、Akt、GSK3β、BMAL1和mTOR的水平。此外,加入20 μmol·L⁻¹ CLK8以检测IR-HepG2细胞中的葡萄糖消耗以及ChREBP、PPARα和mTOR的蛋白水平。结果显示,黄连素增加了IR-HepG2细胞的葡萄糖消耗,降低了脂质水平,增加了BMAL1和CLOCK的表达及核定位,并上调了BMAL1的水平。此外,黄连素上调了ADPN、IRS2、PI3Kp85、p-Akt(Ser473)/Akt、p-mTOR(Ser2448)/mTOR、PPARα和CPT1α的水平,下调了p-GSK3β(Ser9)/GSK3β、ChREBP、SREBP-1C、ACC1和FASN的水平。加入CLK8可降低IR-HepG2细胞的葡萄糖消耗,上调ChREBP水平,并通过抑制BMAL1和CLOCK的相互作用下调PPARα和mTOR水平。综上所述,黄连素通过以BMAL1为核心的生物钟调控基因调节葡萄糖和脂质代谢,以改善肝细胞的IR。